1,542 research outputs found

    Iterative explicit guidance for low thrust spacecraft.

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77340/1/AIAA-1972-916-170.pd

    Thermal Mechanical Stability of Single-Crystal-Oxide Refractive Concentrators Evaluated for High-Temperature Solar-Thermal Propulsion

    Get PDF
    Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig

    Asymptotic solution to the problem of optimal low-thrust energy increase.

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76836/1/AIAA-6700-135.pd

    Thermochemical Degradation Mechanisms for the Reinforced Carbon/Carbon Panels on the Space Shuttle

    Get PDF
    The wing leading edge and nose cone of the Space Shuttle are fabricated from a reinforced carbon/carbon material (RCC). The material attains its oxidation resistance from a diffusion coating of SiC and a glass sealant. During re-entry, the RCC material is subjected to an oxidizing high temperature environment, which leads to degradation via several mechanisms. These mechanisms include oxidation to form a silica scale, reaction of the SiO2 with the SiC to evolve gaseous products, viscous flow of the glass, and vaporization of the glass. Each of these is discussed in detail. Following extended service and many missions, the leading-edge wing surfaces have exhibited small pinholes. A chloridation/oxidation mechanism is proposed to arise from the NaCl deposited on the wings from the sea-salt laden air in Florida. This involves a local chloridation reaction of the SiC and subsequent re-oxidation at the external surface. Thermodynamic calculations indicate the feasibility of these reactions at active pits. Kinetic calculations predict pore depths close to those observed

    Plasma sprayed mullite coatings on silicon-base ceramics

    Get PDF
    A silicon-base ceramic substrate is provided with a mullite chemical barrier/thermal barrier coating uniformly bonded to a surface. The coating is substantially free of amorphous mullite

    Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    Get PDF
    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide

    Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    Get PDF
    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role

    Refractory Oxide Coatings on Sic Ceramics

    Get PDF
    Silicon carbide with a refractory oxide coating is potentially a very attractive ceramic system. It offers the desirable mechanical and physical properties of SiC and the environmental durability of a refractory oxide. The development of a thermal shock resistant plasma-sprayed mullite coating on SiC is discussed. The durability of the mullite/SiC in oxidizing, reducing, and molten salt environments is discussed. In general, this system exhibits better behavior than uncoated SiC. Areas for further developments are discussed

    HLA homozygosity does not adversely affect measles vaccine-induced cytokine responses

    Get PDF
    AbstractThe association between HLA homozygosity and measles-specific Th1 (IFN-γ, IL-2 and IL-12p40) and Th2 (IL-4 and IL-10) cytokine responses were assessed in a group of 339 healthy schoolchildren 12–18 years of age previously immunized with two doses of live-attenuated measles virus vaccine. No associations were observed between class I HLA homozygosity and measles-specific cytokine levels. Children who were homozygous at the class II DRB1, DQA1, DPA1 and DPB1 loci had higher median IFN-γ secretion levels compared with children who were heterozygous for DRB1 (77.7 vs. 39.5 pg/ml, p=0.05), DQA1 (60.9 vs. 36.6 pg/ml, p=0.03), DPA1 (46.1 vs. 27.1 pg/ml, p=0.01) and DPB1 (61.5 vs. 36.0 pg/ml, p=0.01) loci, respectively. Homozygosity at increasing numbers of HLA loci ( >=4) was associated with increased IFN-γ secretion levels (test for trend p-value=0.01). Our results suggest that HLA homozygosity showed no disadvantage for measles-specific cytokine responses and instead was associated with increased IFN-γ levels

    New generation of plasma-sprayed mullite coatings on silicon carbide

    Get PDF
    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion
    corecore