15,429 research outputs found
Thermionic research and development program Final report, 15 Jul. 1966 - 15 Jan. 1968
Thermionic research and development program - improvement of performance of low emitter temperature cesium vapor thermionic converter
Comment on "Accelerated Detectors and Temperature in (Anti) de Sitter Spaces"
It is shown how the results of Deser and Levin on the response of accelerated
detectors in anti-de Sitter space can be understood from the same general
perspective as other thermality results in spacetimes with bifurcate Killing
horizons.Comment: 5 pages, LaTe
Theoretical and experimental comparison of vapor cavitation in dynamically loaded journal bearings
Vapor cavitation for a submerged journal bearing under dynamically loaded conditions was investigated. The observation of vapor cavitation in the laboratory was done by high-speed photography. It was found that vapor cavitation occurs when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The theoretical solution to the Reynolds equation is determined numerically using a moving boundary algorithm. This algorithm conserves mass throughout the computational domain including the region of cavitation and its boundaries. An alternating direction implicit (MDI) method is used to effect the time march. A rotor undergoing circular whirl was studied. Predicted cavitation behavior was analyzed by three-dimensional computer graphic movies. The formation, growth, and collapse of the bubble in response to the dynamic conditions is shown. For the same conditions of dynamic loading, the cavitation bubble was studied in the laboratory using high-speed photography
On the effects of the Dvali-Gabadadze-Porrati braneworld gravity on the orbital motion of a test particle
In this paper we explicitly work out the secular perturbations induced on all
the Keplerian orbital elements of a test body to order O(e^2) in the
eccentricity e by the weak-field long-range modifications of the usual
Newton-Einstein gravity due to the Dvali-Gabadadze-Porrati (DGP) braneworld
model. The Gauss perturbative scheme is used. It turns out that the argument of
pericentre and the mean anomaly are affected by secular rates which are
independent of the semimajor axis of the orbit of the test particle. The first
nonvaishing eccentricity-dependent corrections are of order O(e^2). For
circular orbits the Lue-Starkman (LS) effect on the pericentre is obtained.
Some observational consequences are discussed for the Solar System planetary
mean longitudes lambda which would undergo a 1.2\cdot 10^-3 arcseconds per
century braneworld secular precession. According to recent data analysis over
92 years for the EPM2004 ephemerides, the 1-sigma formal accuracy in
determining the Martian mean longitude amounts to 3\cdot 10^-3 milliarcseconds,
while the braneworld effect over the same time span would be 1.159
milliarcseconds. The major limiting factor is the 2.6\cdot 10^-3 arcseconds per
century systematic error due to the mismodelling in the Keplerian mean motion
of Mars. A suitable linear combination of the mean longitudes of Mars and Venus
may overcome this problem. The formal, 1-sigma obtainable observational
accuracy would be \sim 7%. The systematic error due to the present-day
uncertainties in the solar quadrupole mass moment, the Keplerian mean motions,
the general relativistic Schwarzschild field and the asteroid ring would amount
to some tens of percent.Comment: LaTex2e, 23 pages, 5 tables, 1 figure, 37 references. Second-order
corrections in eccentricity explicitly added. Typos corrected. References
update
General covariance, and supersymmetry without supersymmetry
An unusual four-dimensional generally covariant and supersymmetric SU(2)
gauge theory is described. The theory has propagating degrees of freedom, and
is invariant under a local (left-handed) chiral supersymmetry, which is half
the supersymmetry of supergravity. The Hamiltonian 3+1 decomposition of the
theory reveals the remarkable feature that the local supersymmetry is a
consequence of Yang-Mills symmetry, in a manner reminiscent of how general
coordinate invariance in Chern-Simons theory is a consequence of Yang-Mills
symmetry. It is possible to write down an infinite number of conserved
currents, which strongly suggests that the theory is classically integrable. A
possible scheme for non-perturbative quantization is outlined. This utilizes
ideas that have been developed and applied recently to the problem of
quantizing gravity.Comment: 17 pages, RevTeX, two minor errors correcte
Bases in Lie and Quantum Algebras
Applications of algebras in physics are related to the connection of
measurable observables to relevant elements of the algebras, usually the
generators. However, in the determination of the generators in Lie algebras
there is place for some arbitrary conventions. The situation is much more
involved in the context of quantum algebras, where inside the quantum universal
enveloping algebra, we have not enough primitive elements that allow for a
privileged set of generators and all basic sets are equivalent. In this paper
we discuss how the Drinfeld double structure underlying every simple Lie
bialgebra characterizes uniquely a particular basis without any freedom,
completing the Cartan program on simple algebras. By means of a perturbative
construction, a distinguished deformed basis (we call it the analytical basis)
is obtained for every quantum group as the analytical prolongation of the above
defined Lie basis of the corresponding Lie bialgebra. It turns out that the
whole construction is unique, so to each quantum universal enveloping algebra
is associated one and only one bialgebra. In this way the problem of the
classification of quantum algebras is moved to the classification of
bialgebras. In order to make this procedure more clear, we discuss in detail
the simple cases of su(2) and su_q(2).Comment: 16 pages, Proceedings of the 5th International Symposium on Quantum
Theory and Symmetries QTS5 (July 22-28, 2007, Valladolid (Spain)
Performance of differenced range data types in Voyager navigation
Voyager radio navigation made use of a differenced rage data type for both Saturn encounters because of the low declination singularity of Doppler data. Nearly simultaneous two-way range from two-station baselines was explicitly differenced to produce this data type. Concurrently, a differential VLBI data type (DDOR), utilizing doubly differenced quasar-spacecraft delays, with potentially higher precision was demonstrated. Performance of these data types is investigated on the Jupiter-to-Saturn leg of Voyager 2. The statistics of performance are presented in terms of actual data noise comparisons and sample orbit estimates. Use of DDOR as a primary data type for navigation to Uranus is discussed
Bound on the Dark Matter Density in the Solar System from Planetary Motions
High precision planet orbital data extracted from direct observation,
spacecraft explorations and laser ranging techniques enable to put a strong
constraint on the maximal dark matter density of a spherical halo centered
around the Sun. The maximal density at Earth's location is of the order
and shows only a mild dependence on the slope of the halo
profile, taken between 0 and -2. This bound is somewhat better than that
obtained from the perihelion precession limits.Comment: 7 pages, 1 figur
- …