10,609 research outputs found

    Rate theory for correlated processes: Double-jumps in adatom diffusion

    Get PDF
    We study the rate of activated motion over multiple barriers, in particular the correlated double-jump of an adatom diffusing on a missing-row reconstructed Platinum (110) surface. We develop a Transition Path Theory, showing that the activation energy is given by the minimum-energy trajectory which succeeds in the double-jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a sqrt{T} prefactor for the activated rate of double-jumps. Theory and numerical results agree

    Infrared Optical Properties of Ferropericlase (Mg1-xFexO): Experiment and Theory

    Full text link
    The temperature dependence of the reflectance spectra of magnesium oxide (MgO) and ferropericlase (Mg1-xFexO, for x=0.06 and x=0.27) have been measured over a wide frequency range (~50 to 32000 cm-1) at 295 and 6 K. The complex dielectric function has been determined from a Kramers-Kronig analysis of the reflectance. The spectra of the doped materials resembles pure MgO in the infrared region, but with much broader resonances. We use a shell model to calculate the dielectric function of ferropericlase, including both anharmonic phonon-phonon interactions and disorder scattering. These data are relevant to understanding the heat conductivity of ferropericlase in the earth's lower mantle.Comment: 17 pages, 6 figure

    Simulations of energetic beam deposition: from picoseconds to seconds

    Full text link
    We present a new method for simulating crystal growth by energetic beam deposition. The method combines a Kinetic Monte-Carlo simulation for the thermal surface diffusion with a small scale molecular dynamics simulation of every single deposition event. We have implemented the method using the effective medium theory as a model potential for the atomic interactions, and present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to 35 eV. The method is capable of following the growth of several monolayers at realistic growth rates of 1 monolayer per second, correctly accounting for both energy-induced atomic mobility and thermal surface diffusion. We find that the energy influences island and step densities and can induce layer-by-layer growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag), which correlates with where the net impact-induced downward interlayer transport is at a maximum. A high step density is needed for energy induced layer-by-layer growth, hence the effect dies away at increased temperatures, where thermal surface diffusion reduces the step density. As part of the development of the method, we present molecular dynamics simulations of single atom-surface collisions on flat parts of the surface and near straight steps, we identify microscopic mechanisms by which the energy influences the growth, and we discuss the nature of the energy-induced atomic mobility

    Interplay between quantum criticality and geometrical frustration in Fe3Mo3N with stella quadrangula lattice

    Get PDF
    In the eta-carbide-type correlated-electron metal Fe3Mo3N, ferromagnetism is abruptly induced from a nonmagnetic non-Fermi-liquid ground state either when a magnetic field (~14 T) applied to it or when it is doped with a slight amount of impurity (~5% Co). We observed a peak in the paramagnetic neutron scattering intensity at finite wave vectors, revealing the presence of the antiferromagnetic (AF) correlation hidden in the magnetic measurements. It causes a new type of geometrical frustration in the stellla quadrangula lattice of the Fe sublattice. We propose that the frustrated AF correlation suppresses the F correlation to its marginal point and is therfore responsible for the origin of the ferromagnetic (F) quantum critical behavior in pure Fe3Mo3N

    Are the renormalized band widths in TTF-TCNQ of structural or electronic origin? - An angular dependent NEXAFS study

    Get PDF
    We have performed angle-dependent near-edge x-ray absorption fine structure measurements in the Auger electron yield mode on the correlated quasi-one-dimensional organic conductor TTF-TCNQ in order to determine the orientation of the molecules in the topmost surface layer. We find that the tilt angles of the molecules with respect to the one-dimensional axis are essentially the same as in the bulk. Thus we can rule out surface relaxation as the origin of the renormalized band widths which were inferred from the analysis of photoemission data within the one-dimensional Hubbard model. Thereby recent theoretical results are corroborated which invoke long-range Coulomb repulsion as alternative explanation to understand the spectral dispersions of TTF-TCNQ quantitatively within an extended Hubbard model.Comment: 6 pages, 5 figure

    Bayesian Error Estimation in Density Functional Theory

    Full text link
    We present a practical scheme for performing error estimates for Density Functional Theory calculations. The approach which is based on ideas from Bayesian statistics involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies for molecules and solids. Fluctuations within the ensemble can then be used to estimate errors relative to experiment on calculated quantities like binding energies, bond lengths, and vibrational frequencies. It is demonstrated that the error bars on energy differences may vary by orders of magnitude for different systems in good agreement with existing experience.Comment: 5 pages, 3 figure

    Loop Model with Generalized Fugacity in Three Dimensions

    Full text link
    A statistical model of loops on the three-dimensional lattice is proposed and is investigated. It is O(n)-type but has loop fugacity that depends on global three-dimensional shapes of loops in a particular fashion. It is shown that, despite this non-locality and the dimensionality, a layer-to-layer transfer matrix can be constructed as a product of local vertex weights for infinitely many points in the parameter space. Using this transfer matrix, the site entropy is estimated numerically in the fully packed limit.Comment: 16pages, 4 eps figures, (v2) typos and Table 3 corrected. Refs added, (v3) an error in an explanation of fig.2 corrected. Refs added. (v4) Changes in the presentatio

    Diffusion processes and growth on stepped metal surfaces

    Full text link
    We study the dynamics of adatoms in a model of vicinal (11m) fcc metal surfaces. We examine the role of different diffusion mechanisms and their implications to surface growth. In particular, we study the effect of steps and kinks on adatom dynamics. We show that the existence of kinks is crucially important for adatom motion along and across steps. Our results are in agreement with recent experiments on Cu(100) and Cu(1,1,19) surfaces. The results also suggest that for some metals exotic diffusion mechanisms may be important for mass transport across the steps.Comment: 3 pages, revtex, complete file available from ftp://rock.helsinki.fi/pub/preprints/tft/ or at http://www.physics.helsinki.fi/tft/tft_preprints.html (to appear in Phys. Rev. B Rapid Comm.
    • 

    corecore