31 research outputs found
Gene-Network Analysis Identifies Susceptibility Genes Related to Glycobiology in Autism
The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD), and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD
An inherited duplication at the gene p21 protein-activated Kinase 7 (PAK7) is a risk factor for psychosis
FUNDING Funding for this study was provided by the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z), the Wellcome Trust (072894/Z/03/Z, 090532/Z/09/Z and 075491/Z/04/B), NIMH grants (MH 41953 and MH083094) and Science Foundation Ireland (08/IN.1/B1916). We acknowledge use of the Trinity Biobank sample from the Irish Blood Transfusion Service; the Trinity Centre for High Performance Computing; British 1958 Birth Cohort DNA collection funded by the Medical Research Council (G0000934) and the Wellcome Trust (068545/Z/02) and of the UK National Blood Service controls funded by the Wellcome Trust. Chris Spencer is supported by a Wellcome Trust Career Development Fellowship (097364/Z/11/Z). Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust. ACKNOWLEDGEMENTS The authors sincerely thank all patients who contributed to this study and all staff who facilitated their involvement. We thank W. Bodmer and B. Winney for use of the People of the British Isles DNA collection, which was funded by the Wellcome Trust. We thank Akira Sawa and Koko Ishzuki for advice on the PAK7–DISC1 interaction experiment and Jan Korbel for discussions on mechanism of structural variation.Peer reviewedPublisher PD
Synthesis, thiol-yne "click" photopolymerization, and physical properties of networks derived from novel multifunctional alkynes
Multifunctional alkynes (2, 3, or 4 ynes per monomer) were prepared utilizing the nucleophile-catalyzed thio-Michael addition reaction from commercially available multifunctional thiols (2, 3, or 4 thiols) and propargyl acrylate. Real-time FTIR (RTIR) and NMR spectroscopies indicate that the conjugate addition under these conditions proceeds to high conversions within seconds using the nucleophilic catalyst dimethylphenylphosphine, in the absence of solvent, at ambient temperature, and with no side products. A family of polymer networks was prepared by the photoinitiated thiol-yne reaction employing a 2:1 ratio of thiol to alkyne, which resulted in uniformly cross-linked materials of systematically increasing cross-link density. Photopolymerization kinetic profiles indicate that the thiol-yne reaction proceeded rapidly to high conversion with conversions decreasing with increasing functionality of the thiol and/or alkyne groups. Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) results clearly indicate that the glass transition temperature increases as the overall cross-link density increases (from -10 to 42 °C by DMTA). An increase in the rubbery modulus (from 6 to 23 MPa at 70 °C) results as the functionality increases, with a concomitant decrease in the molecular weight between cross-links. © 2010 American Chemical Society
Recommended from our members
Gene-network analysis identifies susceptibility genes related to glycobiology in autism.
The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD), and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD