2,446 research outputs found

    Rotaviren beim Pferd

    Get PDF

    UBM/slit-lamp-photo imaging of pseudoexfoliation deposits in the iridocorneal angle: imaging clues to the genesis of ocular hypertension

    Get PDF
    This photo essay is aimed at showing slit-lamp photographic views and its ultrasound biomicroscopy (UBM) corollaries of angle deposits in pseudoexfoliation syndrome cases and contributes visual arguments to the hypotheses and explanations of the genesis of ocular hypertension

    A characterization of Dirac morphisms

    Full text link
    Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.Comment: 18 pages; restricted to the even-dimensional cas

    Using force covariance to derive effective stochastic interactions in dissipative particle dynamics

    Full text link
    There exist methods for determining effective conservative interactions in coarse grained particle based mesoscopic simulations. The resulting models can be used to capture thermal equilibrium behavior, but in the model system we study do not correctly represent transport properties. In this article we suggest the use of force covariance to determine the full functional form of dissipative and stochastic interactions. We show that a combination of the radial distribution function and a force covariance function can be used to determine all interactions in dissipative particle dynamics. Furthermore we use the method to test if the effective interactions in dissipative particle dynamics (DPD) can be adjusted to produce a force covariance consistent with a projection of a microscopic Lennard-Jones simulation. The results indicate that the DPD ansatz may not be consistent with the underlying microscopic dynamics. We discuss how this result relates to theoretical studies reported in the literature.Comment: 10 pages, 10 figure

    Chebyshev type lattice path weight polynomials by a constant term method

    Full text link
    We prove a constant term theorem which is useful for finding weight polynomials for Ballot/Motzkin paths in a strip with a fixed number of arbitrary `decorated' weights as well as an arbitrary `background' weight. Our CT theorem, like Viennot's lattice path theorem from which it is derived primarily by a change of variable lemma, is expressed in terms of orthogonal polynomials which in our applications of interest often turn out to be non-classical. Hence we also present an efficient method for finding explicit closed form polynomial expressions for these non-classical orthogonal polynomials. Our method for finding the closed form polynomial expressions relies on simple combinatorial manipulations of Viennot's diagrammatic representation for orthogonal polynomials. In the course of the paper we also provide a new proof of Viennot's original orthogonal polynomial lattice path theorem. The new proof is of interest because it uses diagonalization of the transfer matrix, but gets around difficulties that have arisen in past attempts to use this approach. In particular we show how to sum over a set of implicitly defined zeros of a given orthogonal polynomial, either by using properties of residues or by using partial fractions. We conclude by applying the method to two lattice path problems important in the study of polymer physics as models of steric stabilization and sensitized flocculation.Comment: 27 pages, 14 figure

    A Physicist's Proof of the Lagrange-Good Multivariable Inversion Formula

    Full text link
    We provide yet another proof of the classical Lagrange-Good multivariable inversion formula using techniques of quantum field theory.Comment: 9 pages, 3 diagram

    Thermodynamic instability and first-order phase transition in an ideal Bose gas

    Full text link
    We conduct a rigorous investigation into the thermodynamic instability of ideal Bose gas confined in a cubic box, without assuming thermodynamic limit nor continuous approximation. Based on the exact expression of canonical partition function, we perform numerical computations up to the number of particles one million. We report that if the number of particles is equal to or greater than a certain critical value, which turns out to be 7616, the ideal Bose gas subject to Dirichlet boundary condition reveals a thermodynamic instability. Accordingly we demonstrate - for the first time - that, a system consisting of finite number of particles can exhibit a discontinuous phase transition featuring a genuine mathematical singularity, provided we keep not volume but pressure constant. The specific number, 7616 can be regarded as a characteristic number of 'cube' that is the geometric shape of the box.Comment: 1+21 pages; 3 figures (2 color and 1 B/W); Final version to appear in Physical Review A. Title changed from the previous one, "7616: Critical number of ideal Bose gas confined in a cubic box
    corecore