8 research outputs found
Impacts of the Changing Pacific on North American Drought, Atmospheric Rivers, and Explosive Cyclones
The impacts of specific weather events can vary greatly from year to year. Much of these impacts depend heavily on the frequency of impactful weather which is constrained by the state of the climate system each year. This research focuses largely on the impacts that climate oscillations from year-to-year or even from decade-to-decade have on the frequency of impactful weather. There are numerous examples of impactful weather that impact North America, but this work focuses on drought in the western United States, atmospheric rivers in Northern California and rapidly developing winter storms along the east coast. While seemingly disparate events, there is much overlap in the mechanisms by which variations in the ocean and atmosphere can impact the frequency of these impactful events. Most of these mechanisms involve the tropical Pacific Ocean, which acts as a major driving force for the state of the atmosphere over North America and the resulting frequency of weather extremes
Data Mining Climate Variability as an Indicator of U.S. Natural Gas
Anomalously cold winters with extreme storms strain natural gas (NG) markets due to heightened demand for heating and electricity generation. While extended weather forecasting has become an indicator for NG management, seasonal (2–3 month) prediction could mitigate the impact of extreme winters on the NG market for consumers and industry. Interrelated climate patterns of ocean and atmospheric circulation anomalies exhibit characteristics useful for developing effective seasonal outlooks of NG storage and consumption due to their influence on the persistence and intensity of extreme winter weather in North America. This study explores the connection between the Pacific-North American climate systems and the NG market in the U.S., connecting macro-scale oceanic and atmospheric processes to regional NG storage and consumption. Western Pacific sea surface temperatures and atmospheric pressure patterns describe significant variation in seasonal NG storage and consumption. Prediction of these coupled climate processes is useful for estimating NG storage and consumption; this could facilitate economic adaptation toward extreme winter weather conditions. Understanding the implicated impact of climate variability on NG is a crucial step toward economic adaptation to climate change
Atmospheric Rivers Impacting Northern California Exhibit a Quasi-Decadal Frequency
Periods of water surplus and deficit in Northern California follow a pronounced quasi-decadal cycle. This cycle is largely driven by the frequency of atmospheric rivers (ARs), affecting the region’s wet and dry periods. Our analyses demonstrate that the quasi-decadal cycle of AR frequency relies on moisture transport associated with the position and intensity of the Aleutian Low. In observations, the Aleutian Low is shown to covary with tropical Pacific sea surface temperature anomalies. A modeling experiment, which incorporates ocean observations from the equatorial Pacific into the fully coupled climate model, provides support that the quasi-decadal cycle of the Aleutian Low is forced by the tropical Pacific. Subsequently, the tropical Pacific modulates the wet season moisture transport toward California on decadal time scales, affecting AR frequency. These results provide metrics for improving interannual-to-decadal prediction of AR activity, which drives hydrological cycles in Northern California
Responses of Extreme Discharge to Changes in Surface-Air and Dewpoint Temperatures in Utah: Seasonality and Mechanisms
The changes in stream discharge extremes due to temperature and seasonality are key metrics in assessing the effects of climate change on the hydrological cycle. While scaling is commonly applied to temperature and precipitation due to the physical connections between temperature and moisture (i.e., Clausius–Clapeyron), the scaling rate of stream discharge extremes to air and dewpoint temperatures has not been evaluated. To address this challenge, we assess the scaling rates between stream discharge and air temperature and between stream discharge and dewpoint temperature in Utah using a well-designed statistical framework. While there are deviations from the Clausius–Clapeyron (CC) relationship in Utah using discharge data based on stream gauges and gridded climate data, we identify positive scaling rates of extreme discharge to temperatures across most of the state. Further diagnosis of extreme discharge events reveals that regional factors combined with topography are responsible for the marked seasonality of scaling, with most areas of Utah driven by spring snowmelt tied to high temperatures. The exception is far southwestern areas, being largely driven by winter rain-on-snow events. Our research highlights a measurable portion of stream discharge extremes associated with higher temperatures and dewpoints, suggesting that climate change could facilitate more extreme discharge events despite reductions to mean flows
Water Availability for Cannabis in Northern California: Intersections of Climate, Policy, and Public Discourse
Availability of water for irrigated crops is driven by climate and policy, as moderated by public priorities and opinions. We explore how climate and water policy interact to influence water availability for cannabis (Cannabis sativa), a newly regulated crop in California, as well as how public discourse frames these interactions. Grower access to surface water covaries with precipitation frequency and oscillates consistently in an energetic 11–17 year wet-dry cycle. Assessing contemporary cannabis water policies against historic streamflow data showed that legal surface water access was most reliable for cannabis growers with small water rights (m3) and limited during relatively dry years. Climate variability either facilitates or limits water access in cycles of 10–15 years—rendering cultivators with larger water rights vulnerable to periods of drought. However, news media coverage excludes growers’ perspectives and rarely mentions climate and weather, while public debate over growers’ irrigation water use presumes illegal diversion. This complicates efforts to improve growers’ legal water access, which are further challenged by climate. To promote a socially, politically, and environmentally viable cannabis industry, water policy should better represent growers’ voices and explicitly address stakeholder controversies as it adapts to this new and legal agricultural water user
Responses of Extreme Discharge to Changes in Surface-Air and Dewpoint Temperatures in Utah: Seasonality and Mechanisms
The changes in stream discharge extremes due to temperature and seasonality are key metrics in assessing the effects of climate change on the hydrological cycle. While scaling is commonly applied to temperature and precipitation due to the physical connections between temperature and moisture (i.e., Clausius–Clapeyron), the scaling rate of stream discharge extremes to air and dewpoint temperatures has not been evaluated. To address this challenge, we assess the scaling rates between stream discharge and air temperature and between stream discharge and dewpoint temperature in Utah using a well-designed statistical framework. While there are deviations from the Clausius–Clapeyron (CC) relationship in Utah using discharge data based on stream gauges and gridded climate data, we identify positive scaling rates of extreme discharge to temperatures across most of the state. Further diagnosis of extreme discharge events reveals that regional factors combined with topography are responsible for the marked seasonality of scaling, with most areas of Utah driven by spring snowmelt tied to high temperatures. The exception is far southwestern areas, being largely driven by winter rain-on-snow events. Our research highlights a measurable portion of stream discharge extremes associated with higher temperatures and dewpoints, suggesting that climate change could facilitate more extreme discharge events despite reductions to mean flows
Water Availability for Cannabis in Northern California: Intersections of Climate, Policy, and Public Discourse
Availability of water for irrigated crops is driven by climate and policy, as moderated by public priorities and opinions. We explore how climate and water policy interact to influence water availability for cannabis (Cannabis sativa), a newly regulated crop in California, as well as how public discourse frames these interactions. Grower access to surface water covaries with precipitation frequency and oscillates consistently in an energetic 11–17 year wet-dry cycle. Assessing contemporary cannabis water policies against historic streamflow data showed that legal surface water access was most reliable for cannabis growers with small water rights (<600 m3) and limited during relatively dry years. Climate variability either facilitates or limits water access in cycles of 10–15 years—rendering cultivators with larger water rights vulnerable to periods of drought. However, news media coverage excludes growers’ perspectives and rarely mentions climate and weather, while public debate over growers’ irrigation water use presumes illegal diversion. This complicates efforts to improve growers’ legal water access, which are further challenged by climate. To promote a socially, politically, and environmentally viable cannabis industry, water policy should better represent growers’ voices and explicitly address stakeholder controversies as it adapts to this new and legal agricultural water user
Recommended from our members
Amplified drought trends in Nepal increase the potential for Himalayan wildfires
In spring 2021, Nepal underwent a record wildfire season in which active fires were detected at a rate 10 times greater than the 2002–2020 average. Prior to these major wildfire events, the country experienced a prolonged precipitation deficit and extreme drought during the post-monsoon period (starting in October 2020). An analysis using observational, reanalysis, and climate model ensemble data indicates that both climate variability and climate change-induced severe drought conditions were at play. Further analysis of climate model outputs suggests the likely reoccurrence of drought conditions, thus favoring active wildfire seasons in Nepal throughout the twenty-first century. While the inter-model uncertainty is large and direct modeling of wildfire spread and suppression has not been completed, the demonstrated relationship between a drought index (the standardized precipitation and evapotranspiration index) and subsequent fire activity may offer actionable opportunities for forest managers to employ the monitoring and projection of climate anomalies at sub-seasonal to decadal timescales to inform their management strategies for Nepal’s wildlands