1,228 research outputs found

    Martin Dibner Correspondence

    Get PDF
    Entries include a typed letter from Doubleday & Company Inc. and a hand written card from Dibner, notes of a phone call from Dibner asking for the return of his original MS and a certified mail receipt, a typed letter on personal stationery concerning the proposal to make the new library of Boston University Dibner\u27s manuscript repository, a copy of the letter of proposal from Boston University, a typed letter on Westbrook College stationery, a newspaper article clipping with a photographic image of Dibner, and a newspaper clipping relating advice from the California Fine Arts Commission to the new commission of the Arts and Humanities in the State of Main

    Does J/ψ→π+π−J/\psi \rightarrow \pi^{+} \pi^{-} fix the Electromagnetic Form Factor Fπ(t)F_{\pi}(t) at t=MJ/ψ2t=M_{J/\psi}^2?

    Full text link
    We show that the J/ψ→π+π−J/\psi \rightarrow \pi^{+} \pi^{-} decay is a reliable source of information for the electromagnetic form factor of the pion at t=MJ/ψ2=9.6GeV2t=M_{J/\psi}^2=9.6 {\rm GeV}^2 by using general arguments to estimate, or rather, put upper bounds on, the background processes that could spoil this extraction. We briefly comment on the significance of the resulting Fπ(MJ/ψ2)F_{\pi}(M_{J/\psi}^2).Comment: 10 pages revtex manuscript, one figure--not included, U. of MD PP #94-00

    Knowledge Graph Question Answering for Materials Science (KGQA4MAT): Developing Natural Language Interface for Metal-Organic Frameworks Knowledge Graph (MOF-KG)

    Full text link
    We present a comprehensive benchmark dataset for Knowledge Graph Question Answering in Materials Science (KGQA4MAT), with a focus on metal-organic frameworks (MOFs). A knowledge graph for metal-organic frameworks (MOF-KG) has been constructed by integrating structured databases and knowledge extracted from the literature. To enhance MOF-KG accessibility for domain experts, we aim to develop a natural language interface for querying the knowledge graph. We have developed a benchmark comprised of 161 complex questions involving comparison, aggregation, and complicated graph structures. Each question is rephrased in three additional variations, resulting in 644 questions and 161 KG queries. To evaluate the benchmark, we have developed a systematic approach for utilizing ChatGPT to translate natural language questions into formal KG queries. We also apply the approach to the well-known QALD-9 dataset, demonstrating ChatGPT's potential in addressing KGQA issues for different platforms and query languages. The benchmark and the proposed approach aim to stimulate further research and development of user-friendly and efficient interfaces for querying domain-specific materials science knowledge graphs, thereby accelerating the discovery of novel materials.Comment: In 17th International Conference on Metadata and Semantics Research, October 202

    Metadata for Scientific Experiment Reporting: A Case Study in Metal-Organic Frameworks

    Full text link
    Research methods and procedures are core aspects of the research process. Metadata focused on these components is critical to supporting the FAIR principles, particularly reproducibility. The research reported on in this paper presents a methodological framework for metadata documentation supporting the reproducibility of research producing Metal Organic Frameworks (MOFs). The MOF case study involved natural language processing to extract key synthesis experiment information from a corpus of research literature. Following, a classification activity was performed by domain experts to identify entity-relation pairs. Results include: 1) a research framework for metadata design, 2) a metadata schema that includes nine entities and two relationships for reporting MOF synthesis experiments, and 3) a growing database of MOF synthesis reports structured by our metadata scheme. The metadata schema is intended to support discovery and reproducibility of metal-organic framework research and the FAIR principles. The paper provides background information, identifies the research goals and objectives, research design, results, a discussion, and the conclusion.Comment: Accepted by the 17th International Conference on Metadata and Semantics Researc

    Translating data analytics into improved spine surgery outcomes: A roadmap for biomedical informatics research in 2021

    Get PDF
    STUDY DESIGN: Narrative review. OBJECTIVES: There is growing interest in the use of biomedical informatics and data analytics tools in spine surgery. Yet despite the rapid growth in research on these topics, few analytic tools have been implemented in routine spine practice. The purpose of this review is to provide a health information technology (HIT) roadmap to help translate data assets and analytics tools into measurable advances in spine surgical care. METHODS: We conducted a narrative review of PubMed and Google Scholar to identify publications discussing data assets, analytical approaches, and implementation strategies relevant to spine surgery practice. RESULTS: A variety of data assets are available for spine research, ranging from commonly used datasets, such as administrative billing data, to emerging resources, such as mobile health and biobanks. Both regression and machine learning techniques are valuable for analyzing these assets, and researchers should recognize the particular strengths and weaknesses of each approach. Few studies have focused on the implementation of HIT, and a variety of methods exist to help translate analytic tools into clinically useful interventions. Finally, a number of HIT-related challenges must be recognized and addressed, including stakeholder acceptance, regulatory oversight, and ethical considerations. CONCLUSIONS: Biomedical informatics has the potential to support the development of new HIT that can improve spine surgery quality and outcomes. By understanding the development life-cycle that includes identifying an appropriate data asset, selecting an analytic approach, and leveraging an effective implementation strategy, spine researchers can translate this potential into measurable advances in patient care

    Building Open Knowledge Graph for Metal-Organic Frameworks (MOF-KG): Challenges and Case Studies

    Full text link
    Metal-Organic Frameworks (MOFs) are a class of modular, porous crystalline materials that have great potential to revolutionize applications such as gas storage, molecular separations, chemical sensing, catalysis, and drug delivery. The Cambridge Structural Database (CSD) reports 10,636 synthesized MOF crystals which in addition contains ca. 114,373 MOF-like structures. The sheer number of synthesized (plus potentially synthesizable) MOF structures requires researchers pursue computational techniques to screen and isolate MOF candidates. In this demo paper, we describe our effort on leveraging knowledge graph methods to facilitate MOF prediction, discovery, and synthesis. We present challenges and case studies about (1) construction of a MOF knowledge graph (MOF-KG) from structured and unstructured sources and (2) leveraging the MOF-KG for discovery of new or missing knowledge.Comment: Accepted by the International Workshop on Knowledge Graphs and Open Knowledge Network (OKN'22) Co-located with the 28th ACM SIGKDD Conferenc

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Upper limb nerve transfer surgery in patients with tetraplegia

    Get PDF
    IMPORTANCE: Cervical spinal cord injury (SCI) causes devastating loss of upper extremity function and independence. Nerve transfers are a promising approach to reanimate upper limbs; however, there remains a paucity of high-quality evidence supporting a clinical benefit for patients with tetraplegia. OBJECTIVE: To evaluate the clinical utility of nerve transfers for reanimation of upper limb function in tetraplegia. DESIGN, SETTING, AND PARTICIPANTS: In this prospective case series, adults with cervical SCI and upper extremity paralysis whose recovery plateaued were enrolled between September 1, 2015, and January 31, 2019. Data analysis was performed from August 2021 to February 2022. INTERVENTIONS: Nerve transfers to reanimate upper extremity motor function with target reinnervation of elbow extension and hand grasp, pinch, and/or release. MAIN OUTCOMES AND MEASURES: The primary outcome was motor strength measured by Medical Research Council (MRC) grades 0 to 5. Secondary outcomes included Sollerman Hand Function Test (SHFT); Michigan Hand Outcome Questionnaire (MHQ); Disabilities of Arm, Shoulder, and Hand (DASH); and 36-Item Short Form Health Survey (SF-36) physical component summary (PCS) and mental component summary (MCS) scores. Outcomes were assessed up to 48 months postoperatively. RESULTS: Twenty-two patients with tetraplegia (median age, 36 years [range, 18-76 years]; 21 male [95%]) underwent 60 nerve transfers on 35 upper limbs at a median time of 21 months (range, 6-142 months) after SCI. At final follow-up, upper limb motor strength improved significantly: median MRC grades were 3 (IQR, 2.5-4; P = .01) for triceps, with 70% of upper limbs gaining an MRC grade of 3 or higher for elbow extension; 4 (IQR, 2-4; P \u3c .001) for finger extensors, with 79% of hands gaining an MRC grade of 3 or higher for finger extension; and 2 (IQR, 1-3; P \u3c .001) for finger flexors, with 52% of hands gaining an MRC grade of 3 or higher for finger flexion. The secondary outcomes of SHFT, MHQ, DASH, and SF36-PCS scores improved beyond the established minimal clinically important difference. Both early (\u3c12 months) and delayed (≥12 months) nerve transfers after SCI achieved comparable motor outcomes. Continual improvement in motor strength was observed in the finger flexors and extensors across the entire duration of follow-up. CONCLUSIONS AND RELEVANCE: In this prospective case series, nerve transfer surgery was associated with improvement of upper limb motor strength and functional independence in patients with tetraplegia. Nerve transfer is a promising intervention feasible in both subacute and chronic SCI

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome
    • …
    corecore