23,529 research outputs found

    Maintaining an ethical balance in the curriculum design of games-based degrees.

    Get PDF
    In February 2011, games-based degrees were subjected to the scrutiny of the Livingstone- Hope report into the future of education in the fields of video games and visual effects. The report delivers a damning appraisal of the education system’s ability to fulfil skills shortages in these creative industries, and makes a range of proposals for changing education in both schools and universities to meet the needs of these sectors. This paper discusses the findings of this report from the perspective of higher education, with particular emphasis on the complex ethical considerations of designing a curriculum for games-based degrees. The argument for taking a broader perspective on this issue is illustrated through discussion of Games Software Development degrees at Sheffield Hallam University

    Reaction rate in a heat bath

    Full text link
    We show in detail how the presence of a heat bath of photons effectively gives charged particles in the final state of a decay process a temperature-dependent mass, and changes the effective strength of the force responsible for the decay. At low temperature, gauge invariance causes both these effects to be largely cancelled by absorption of photons from the heat bath and by stimulated emission into it, but at high temperature the temperature-dependent mass is the dominant feature.Comment: 9 pages plus one figur

    Intrinsic fantasy: motivation and affect in educational games made by children

    Get PDF
    The concept of intrinsic fantasy has been considered central to the aim of usefully applying the positive affect of computer games to learning. Games with intrinsic fantasy are defined as having “an integral and continuing relationship with the instructional content being presented”, and are claimed as “more interesting and more educational” than extrinsic fantasy games [1]. Studies of children making educational games have shown they usually create extrinsic games for curriculum learning content. In this study, children were encouraged to create non-curriculum games, more easily distanced from the extrinsic preconceptions of formal schooling. Forty, 7-11 year olds took part in this study (17 boys and 23 girls), designing and making their own games at an after-school club. Despite non-curriculum learning content, no more intrinsic games were created than in previous studies. The children failed to create their own pedagogical models for non-curriculum content and did not see the educational value of intrinsic fantasy games. The implications for transfer and learning in intrinsic games are discussed whilst the definition of intrinsic fantasy itself is questioned. It is argued that the integral relationship of fantasy is unlikely to be the most critical means of improving the educational effectiveness of digital games

    Uniform Decay of Local Energy and the Semi-Linear Wave Equation on Schwarzchild Space

    Full text link
    We provide a uniform decay estimate of Morawetz type for the local energy of general solutions to the inhomogeneous wave equation on a Schwarzchild background. This estimate is both uniform in space and time, so in particular it implies a uniform bound on the sup norm of solutions which can be given in terms of certain inverse powers of the radial and advanced/retarded time coordinate variables. As a model application, we show these estimates give a very simple proof small amplitude scattering for nonlinear scalar fields with higher than cubic interactions.Comment: 24 page

    Generation of maximally entangled states with sub-luminal Lorentz boost

    Full text link
    Recent work has studied entanglement between the spin and momentum components of a single spin-1/2 particle and showed that maximal entanglement is obtained only when boosts approach the speed of light. Here we extend the boost scenario to general geometries and show that, intriguingly, maximal entanglement can be achieved with boosts less than the speed of light. Boosts approaching the speed of light may even decrease entanglement. We also provide a geometric explanation for this behavior

    Zombie Division : a methodological case study for the evaluation of game-based learning

    Get PDF
    This paper discusses the methodological designs and technologies used to evaluate an educational videogame in order to support researchers in the design of their own evaluative research in the field of game-based learning. The Zombie Division videogame has been used to empirically evaluate the effectiveness of a more intrinsically integrated approach to creating educational games. It was specifically designed to deliver interventions as part of research studies examining differences in learning outcomes and motivation predicted by theoretical contrasts in educational design. The game was used in a series of evaluative studies, which employed experimental methodologies based around one or more treatment groups and a control. Multiple choice questions were used to measure knowledge and understanding before and after interventions (pre, post and delayed) and time-on-task was used as a measure of motivation and preference during interventions. Qualitative interview data was also collected and analysed as part of many of the studies in order to help support and explain the findings in more detail. The experimental methodologies applied in these studies were augmented by a range of bespoke technology systems. This included an automated testing system which could randomly assign participants to treatment groups so that pre-test statistics were closely matched between groups. Large quantities of process data were recorded about players’ interactions with the game in the form of time-stamped log files, and a stream of compressed controller data was saved allowing an entire playing session to be replayed in a video-like form. This rich set of process data was mined as part of a post-hoc analysis in order to identify evidence to help to enrich the understanding of users’ interactions with the game. This paper details the methodological design of both published and unpublished studies, as well as reflecting upon some of the potential pitfalls of classroom-based evaluations in order to illustrate successful and unsuccessful approaches for evaluating game-based learning

    Scaling properties in the production range of shear dominated flows

    Full text link
    Recent developments in turbulence are focused on the effect of large scale anisotropy on the small scale statistics of velocity increments. According to Kolmogorov, isotropy is recovered in the large Reynolds number limit as the scale is reduced and, in the so-called inertial range, universal features -namely the scaling exponents of structure functions - emerge clearly. However this picture is violated in a number of cases, typically in the high shear region of wall bounded flows. The common opinion ascribes this effect to the contamination of the inertial range by the larger anisotropic scales, i.e. the residual anisotropy is assumed as a weak perturbation of an otherwise isotropic dynamics. In this case, given the rotational invariance of the Navier-Stokes equations, the isotropic component of the structure functions keeps the same exponents of isotropic turbulence. This kind of reasoning fails when the anisotropic effects are strong as in the production range of shear dominated flows. This regime is analyzed here by means of both numerical and experimental data for a homogeneous shear flow. A well defined scaling behavior is found to exist, with exponents which differ substantially from those of classical isotropic turbulence. Contrary to what predicted by the perturbation approach, such a deep alteration concerns the isotropic sector itself. The general validity of these results is discussed in the context of turbulence near solid walls, where more appropriate closure models for the coarse grained Navier-Stokes equations would be advisable.Comment: 4 pages, 4 figure
    • …
    corecore