21,200 research outputs found

    Lab notebooks as scientific communication: investigating development from undergraduate courses to graduate research

    Full text link
    In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered `best practice' for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews with practicing researchers, namely physics graduate students, we explore the different experiences researchers had in learning how to effectively use a notebook for scientific documentation. We find that very few of those interviewed thought that their undergraduate lab classes successfully taught them the benefit of maintaining a lab notebook. Most described training in lab notebook use as either ineffective or outright missing from their undergraduate lab course experience. Furthermore, a large majority of those interviewed explained that they did not receive any formal training in maintaining a lab notebook during their graduate school experience and received little to no feedback from their advisors on these records. Many of the interviewees describe learning the purpose of, and how to maintain, these kinds of lab records only after having a period of trial and error, having already started doing research in their graduate program. Despite the central role of scientific documentation in the research enterprise, these physics graduate students did not gain skills in documentation through formal instruction, but rather through informal hands-on practice.Comment: 10 page

    Instructor perspectives on iteration during upper-division optics lab activities

    Full text link
    Although developing proficiency with modeling is a nationally endorsed learning outcome for upper-division undergraduate physics lab courses, no corresponding research-based assessments exist. Our longterm goal is to develop assessments of students' modeling ability that are relevant across multiple upper-division lab contexts. To this end, we interviewed 19 instructors from 16 institutions about optics lab activities that incorporate photodiodes. Interviews focused on how those activities were designed to engage students in some aspects of modeling. We find that, according to many interviewees, iteration is an important aspect of modeling. In addition, interviewees described four distinct types of iteration: revising apparatuses, revising models, revising data-taking procedures, and repeating data collection using existing apparatuses and procedures. We provide examples of each type of iteration, and discuss implications for the development of future modeling assessments.Comment: 4 pages, 1 figure; under revie

    Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    Full text link
    We investigate students' sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students' interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain---namely, upper-division physics labs---they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.Comment: 22 pages, 3 tables, submitted to Phys. Rev. PE

    Simulations of the angular dependence of the dipole-dipole interaction among Rydberg atoms

    Get PDF
    The dipole-dipole interaction between two Rydberg atoms depends on the relative orientation of the atoms and on the change in the magnetic quantum number. We simulate the effect of this anisotropy on the energy transport in an amorphous many atom system subject to a homogeneous applied electric field. We consider two experimentally feasible geometries and find that the effects should be measurable in current generation imaging experiments. In both geometries atoms of pp character are localized to a small region of space which is immersed in a larger region that is filled with atoms of ss character. Energy transfer due to the dipole-dipole interaction can lead to a spread of pp character into the region initially occupied by ss atoms. Over long timescales the energy transport is confined to the volume near the border of the pp region which is suggestive of Anderson localization. We calculate a correlation length of 6.3~μ\mum for one particular geometry.Comment: 6 pages, 5 figures, revised draf

    New path description for the M(k+1,2k+3) models and the dual Z_k graded parafermions

    Full text link
    We present a new path description for the states of the non-unitary M(k+1,2k+3) models. This description differs from the one induced by the Forrester-Baxter solution, in terms of configuration sums, of their restricted-solid-on-solid model. The proposed path representation is actually very similar to the one underlying the unitary minimal models M(k+1,k+2), with an analogous Fermi-gas interpretation. This interpretation leads to fermionic expressions for the finitized M(k+1,2k+3) characters, whose infinite-length limit represent new fermionic characters for the irreducible modules. The M(k+1,2k+3) models are also shown to be related to the Z_k graded parafermions via a (q to 1/q) duality transformation.Comment: 43 pages (minor typo corrected and minor rewording in the introduction

    Particles in RSOS paths

    Full text link
    We introduce a new representation of the paths of the Forrester-Baxter RSOS models which represents the states of the irreducible modules of the minimal models M(p',p). This representation is obtained by transforming the RSOS paths, for the cases p> 2p'-2, to new paths for which horizontal edges are allowed at certain heights. These new paths are much simpler in that their weight is nothing but the sum of the position of the peaks. This description paves the way for the interpretation of the RSOS paths in terms of fermi-type charged particles out of which the fermionic characters could be obtained constructively. The derivation of the fermionic character for p'=2 and p=kp'+/- 1 is outlined. Finally, the particles of the RSOS paths are put in relation with the kinks and the breathers of the restricted sine-Gordon model.Comment: 15 pages, few typos corrected, version publishe

    Hyperatlas: A New Framework for Image Federation

    Get PDF
    Hyperatlas is an open standard intended to facilitate the large-scale federation of image-based data. The subject of hyperatlas is the space of sphere-to-plane projection mappings (the FITS-WCS information), and the standard consists of coherent collections of these on which data can be resampled and thereby federated with other image data. We hope for a distributed effort that will produce a multi-faceted image atlas of the sky, made by federating many different surveys at different wavelengths and different times. We expect that hyperatlas-compliant imagery will be published and discovered through an International Virtual Observatory Alliance (IVOA) registry, and that grid-based services will emerge for the required resampling and mosaicking.Comment: Published in ADASS XIII proceeding

    Atlasmaker: A Grid-based Implementation of the Hyperatlas

    Get PDF
    The Atlasmaker project is using Grid technology, in combination with NVO interoperability, to create new knowledge resources in astronomy. The product is a multi-faceted, multi-dimensional, scientifically trusted image atlas of the sky, made by federating many different surveys at different wavelengths, times, resolutions, polarizations, etc. The Atlasmaker software does resampling and mosaicking of image collections, and is well-suited to operate with the Hyperatlas standard. Requests can be satisfied via on-demand computations or by accessing a data cache. Computed data is stored in a distributed virtual file system, such as the Storage Resource Broker (SRB). We expect these atlases to be a new and powerful paradigm for knowledge extraction in astronomy, as well as a magnificent way to build educational resources. The system is being incorporated into the data analysis pipeline of the Palomar-Quest synoptic survey, and is being used to generate all-sky atlases from the 2MASS, SDSS, and DPOSS surveys for joint object detection.Comment: Published in the Proceedings of ADASS XI

    The Bravyi-Kitaev transformation for quantum computation of electronic structure

    Get PDF
    Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [S. B. Bravyi, A.Yu. Kitaev, Annals of Physics 298, 210-226 (2002)], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time-step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure
    • …
    corecore