4,418 research outputs found

    AtomSim: web-deployed atomistic dynamics simulator

    Get PDF
    AtomSim, a collection of interfaces for computational crystallography simulations, has been developed. It uses forcefield-based dynamics through physics engines such as the General Utility Lattice Program, and can be integrated into larger computational frameworks such as the Virtual Neutron Facility for processing its dynamics into scattering functions, dynamical functions etc. It is also available as a Google App Engine-hosted web-deployed interface. Examples of a quartz molecular dynamics run and a hafnium dioxide phonon calculation are presented

    The Relation Between Galaxy ISM and Circumgalactic OVI Gas Kinematics Derived from Observations and Λ\LambdaCDM Simulations

    Full text link
    We present the first galaxy-OVI absorption kinematic study for 20 absorption systems (EW>0.1~{\AA}) associated with isolated galaxies (0.15<z<<z<0.55) that have accurate redshifts and rotation curves obtained using Keck/ESI. Our sample is split into two azimuthal angle bins: major axis (Φ<25∘\Phi<25^{\circ}) and minor axis (Φ>33∘\Phi>33^{\circ}). OVI absorption along the galaxy major axis is not correlated with galaxy rotation kinematics, with only 1/10 systems that could be explained with rotation/accretion models. This is in contrast to co-rotation commonly observed for MgII absorption. OVI along the minor axis could be modeled by accelerating outflows but only for small opening angles, while the majority of the OVI is decelerating. Along both axes, stacked OVI profiles reside at the galaxy systemic velocity with the absorption kinematics spanning the entire dynamical range of their galaxies. The OVI found in AMR cosmological simulations exists within filaments and in halos of ~50 kpc surrounding galaxies. Simulations show that major axis OVI gas inflows along filaments and decelerates as it approaches the galaxy while increasing in its level of co-rotation. Minor axis outflows in the simulations are effective within 50-75 kpc beyond that they decelerate and fall back onto the galaxy. Although the simulations show clear OVI kinematic signatures they are not directly comparable to observations. When we compare kinematic signatures integrated through the entire simulated galaxy halo we find that these signatures are washed out due to full velocity distribution of OVI throughout the halo. We conclude that OVI alone does not serve as a useful kinematic indicator of gas accretion, outflows or star-formation and likely best probes the halo virial temperature.Comment: 24 pages, 21 figures, 4 tables. Accepted to ApJ on November 14, 201
    • …
    corecore