7 research outputs found

    Rapid Response to SARS-CoV-2 in Aotearoa New Zealand: Implementation of a Diagnostic Test and Characterization of the First COVID-19 Cases in the South Island

    No full text
    It has been 20 months since we first heard of SARS-CoV-2, the novel coronavirus detected in the Hubei province, China, in December 2019, responsible for the ongoing COVID-19 pandemic. Since then, a myriad of studies aimed at understanding and controlling SARS-CoV-2 have been published at a pace that has outshined the original effort to combat HIV during the beginning of the AIDS epidemic. This massive response started by developing strategies to not only diagnose individual SARS-CoV-2 infections but to monitor the transmission, evolution, and global spread of this new virus. We currently have hundreds of commercial diagnostic tests; however, that was not the case in early 2020, when just a handful of protocols were available, and few whole-genome SARS-CoV-2 sequences had been described. It was mid-January 2020 when several District Health Boards across New Zealand started planning the implementation of diagnostic testing for this emerging virus. Here, we describe our experience implementing a molecular test to detect SARS-CoV-2 infection, adapting the RT-qPCR assay to be used in a random-access platform (Hologic Panther Fusion® System) in a clinical laboratory, and characterizing the first whole-genome SARS-CoV-2 sequences obtained in the South Island, right at the beginning of the SARS-CoV-2 outbreak in New Zealand. We expect that this work will help us and others prepare for the unequivocal risk of similar viral outbreaks in the future

    Characterization of the First SARS-CoV-2 Isolates from Aotearoa New Zealand as Part of a Rapid Response to the COVID-19 Pandemic

    No full text
    SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has wreaked havoc across the globe for the last two years. More than 300 million cases and over 5 million deaths later, we continue battling the first real pandemic of the 21st century. SARS-CoV-2 spread quickly, reaching most countries within the first half of 2020, and New Zealand was not an exception. Here, we describe the first isolation and characterization of SARS-CoV-2 variants during the initial virus outbreak in New Zealand. Patient-derived nasopharyngeal samples were used to inoculate Vero cells and, three to four days later, a cytopathic effect was observed in seven viral cultures. Viral growth kinetics was characterized using Vero and VeroE6/TMPRSS2 cells. The identity of the viruses was verified by RT-qPCR, Western blot, indirect immunofluorescence assays, and electron microscopy. Whole-genome sequences were analyzed using two different yet complementary deep sequencing platforms (MiSeq/Illumina and Ion PGM™/Ion Torrent™), classifying the viruses as SARS-CoV-2 B.55, B.31, B.1, or B.1.369 based on the Pango Lineage nomenclature. All seven SARS-CoV-2 isolates were susceptible to remdesivir (EC50 values from 0.83 to 2.42 µM) and β-D-N4-hydroxycytidine (molnupiravir, EC50 values from 0.96 to 1.15 µM) but not to favipiravir (>10 µM). Interestingly, four SARS-CoV-2 isolates, carrying the D614G substitution originally associated with increased transmissibility, were more susceptible (2.4-fold) to a commercial monoclonal antibody targeting the spike glycoprotein than the wild-type viruses. Altogether, this seminal work allowed for early access to SARS-CoV-2 isolates in New Zealand, paving the way for numerous clinical and scientific research projects in the country, including the development and validation of diagnostic assays, antiviral strategies, and a national COVID-19 vaccine development program

    Zusammenfassung, Schlussfolgerungen und Ausblick

    No full text
    corecore