1,253 research outputs found
Can we avoid dark energy?
The idea that we live near the centre of a large, nonlinear void has
attracted attention recently as an alternative to dark energy or modified
gravity. We show that an appropriate void profile can fit both the latest
cosmic microwave background and supernova data. However, this requires either a
fine-tuned primordial spectrum or a Hubble rate so low as to rule these models
out. We also show that measurements of the radial baryon acoustic scale can
provide very strong constraints. Our results present a serious challenge to
void models of acceleration.Comment: 5 pages, 4 figures; minor changes; version published in Phys. Rev.
Let
Males have greater g: Sex differences in general mental ability from 100,000 17- to 18-year-olds on the Scholastic Assessment Test
Abstract In this study we found that 17-to 18-year old males averaged 3.63 IQ points higher than did their female counterparts on the 1991 Scholastic Assessment Test (SAT). We analysed 145 item responses from 46,509 males and 56,007 females (total N = 102,516) using a principal components procedure. We found (1) the g factor underlies both the SAT Verbal (SAT-V) and the SAT Mathematics (SAT-M) scales with the congruence between these components greater than 0.90; (2) the g components predict undergraduate grades better than do the traditionally used SAT-V and SAT-M scales; (3) the male and the female g factors are congruent in excess of .99; (4) male-female differences in g have a point-biserial effect size of 0.12 favoring males (equivalent to 3.63 IQ points); (5) male-female differences in g are present throughout the entire distribution of scores; (6) male-female differences in g are found at every socioeconomic level; and (7) male-female differences in g are found across several ethnic groups. We conclude that while the magnitude of the male-female difference in g is not large, it is real and non-trivial. Finally, we discuss some remaining sex-difference/brain-size/IQ anomalies
Quantum statistical effects in nano-oscillator arrays
We have theoretically predicted the density of states(DOS), the low
temperature specific heat, and Brillouin scattering spectra of a large, free
standing array of coupled nano-oscillators. We have found significant gaps in
the DOS of 2D elastic systems, and predict the average DOS to be nearly
independent of frequency over a broad band f < 50GHz. At low temperatures, the
measurements probe the quantum statistics obeyed by rigid body modes of the
array and, thus, could be used to verify the quantization of the associated
energy levels. These states, in turn, involve center-of mass motion of large
numbers of atoms, N > 1.e14, and therefore such observations would extend the
domain in which quantum mechanics has been experimentally tested. We have found
the required measurement capability to carry out this investigation to be
within reach of current technology.Comment: 1 tex file, 3 figures, 1 bbl fil
Genome Sequence of Mycobacterium Phage Waterfoul
Waterfoul is a new isolated temperate siphovirus of Mycobacterium smegmatis mc2155. It was identified as a member of the K5 cluster of Mycobacterium phages and has a 61,248-bp genome with 95 predicted genes
Inflation from Warped Space
A long period of inflation can be triggered when the inflaton is held up on
the top of a steep potential by the infrared end of a warped space. We first
study the field theory description of such a model. We then embed it in the
flux stabilized string compactification. Some special effects in the throat
reheating process by relativistic branes are discussed. We put all these
ingredients into a multi-throat brane inflationary scenario. The resulting
cosmic string tension and a multi-throat slow-roll model are also discussed.Comment: 39 pages; v4, added reference, to appear in JHE
Presence and distribution of mosquito larvae predators and factors influencing their abundance along the Mara River, Kenya and Tanzania
Among all the malaria controlling measures, biological control of mosquito larvae may be the cheapest and easiest to implement. This study investigated baseline predation of immature mosquitoes by macroinvertebrate predators along the Mara River, determined the diversity of predators and mosquito larvae habitats and the range of their adaptive capacity to water physico-chemical parameters. Between July and August 2011, sampling sites (n=39) along the Mara River were selected and investigated for the presence of macroinvertebrate predators and mosquito larvae. The selected sampling sites were geocoded and each dipped 20 times using standard mosquito larvae dipper to sample mosquito larvae, while a D-frame dip net was used to capture the macroinvertebrate predators. Water physico-chemical parameters (dissolved oxygen, temperature, pH, conductivity, salinity and turbidity) were taken in situ at access points, while hardness and alkalinity were measured titrimetically. The influence of macroinvertebrate predator occurrence was correlated with mosquito larvae and water quality parameters using Generalized Linear Model (GLM). Predators (n=297) belonging to 3 orders of Hemiptera (54.2%), Odonata (22.9%) and Coleoptera (22.9%), and mosquito larvae (n=4001) belonging to 10 species, which included An.gambiae s.l (44.9%), Culex spp. (34.8%) and An. coustani complex (13.8%), An. maculipalpis (3.6%), An. phaorensis (1.2%), An. funestus group (0.5%), An. azaniae (0.4%), An. hamoni (0.3%), An. christyi (0.3%), An. ardensis (0.08%), An. faini (0.07%), An. sergentii (0.05%) and 0.05% of Aedes mosquito larvae which were not identified to species level, due to lack of an appropriate key, were captured from different habitats along the Mara river. It was established that invasion of habitats by the macroinvertebrate predators were partially driven by the presence of mosquito larvae (p < 0.001), and the prevailing water physico-chemical parameters (DO, temperature, and turbidity, p <0.001). Understanding abiotic and biotic factors which favour mosquitoes and macroinveterbrate co-occurrence may contribute to the control of malaria
Two-band random matrices
Spectral correlations in unitary invariant, non-Gaussian ensembles of large
random matrices possessing an eigenvalue gap are studied within the framework
of the orthogonal polynomial technique. Both local and global characteristics
of spectra are directly reconstructed from the recurrence equation for
orthogonal polynomials associated with a given random matrix ensemble. It is
established that an eigenvalue gap does not affect the local eigenvalue
correlations which follow the universal sine and the universal multicritical
laws in the bulk and soft-edge scaling limits, respectively. By contrast,
global smoothed eigenvalue correlations do reflect the presence of a gap, and
are shown to satisfy a new universal law exhibiting a sharp dependence on the
odd/even dimension of random matrices whose spectra are bounded. In the case of
unbounded spectrum, the corresponding universal `density-density' correlator is
conjectured to be generic for chaotic systems with a forbidden gap and broken
time reversal symmetry.Comment: 12 pages (latex), references added, discussion enlarge
Cosmic F- and D-strings
Macroscopic fundamental and Dirichlet strings have several potential
instabilities: breakage, tachyon decays, and confinement by axion domain walls.
We investigate the conditions under which metastable strings can exist, and we
find that such strings are present in many models. There are various
possibilities, the most notable being a network of (p,q) strings. Cosmic
strings give a potentially large window into string physics.Comment: 27 pages, 5 figures; v. 5: JHEP style, added comments in section 2.
Spontaneous Creation of Inflationary Universes and the Cosmic Landscape
We study some gravitational instanton solutions that offer a natural
realization of the spontaneous creation of inflationary universes in the brane
world context in string theory. Decoherence due to couplings of higher
(perturbative) modes of the metric as well as matter fields modifies the
Hartle-Hawking wavefunction for de Sitter space. Generalizing this new
wavefunction to be used in string theory, we propose a principle in string
theory that hopefully will lead us to the particular vacuum we live in, thus
avoiding the anthropic principle. As an illustration of this idea, we give a
phenomenological analysis of the probability of quantum tunneling to various
stringy vacua. We find that the preferred tunneling is to an inflationary
universe (like our early universe), not to a universe with a very small
cosmological constant (i.e., like today's universe) and not to a 10-dimensional
uncompactified de Sitter universe. Such preferred solutions are interesting as
they offer a cosmological mechanism for the stabilization of extra dimensions
during the inflationary epoch.Comment: 52 pages, 7 figures, 1 table. Added discussion on supercritical
string vacua, added reference
- …