1,647 research outputs found
Recommended from our members
Comparison of Nozzles and Flow Straighteners for Tank Waste Sluicing Applications
Nozzles and flow straighteners were compared to assess the relative quality of the water streams for sluicing waste from underground storage tankes. The criteria for comparison were 1) the impact force produced by the streams over a range of distance from the nozzle impinging on target plates, and 2) the coherence of the streams as manifest by the variation of force on targets of two different sizes. It was determined that 1) the standard Hanford flow straightener is measurable less effective than a commercial firefighting flow straightener at producing a coherent stream when used with the standard Hanford nozzle, and 2) a lighter and more compact firefighting deluge nozzle will deliver a stream of equal quality to that from the Hanford nozzle when either nozzle is used with the commercial flow straightener
Racial Differences in Physical and Mental Health
This article examines the extent to which racial differences in socio-economic status (SES), social class and acute and chronic indicators of perceived discrimination, as well as general measures of stress can account for black-white differences in self-reported measures of physical and mental health. The observed racial differences in health were markedly reduced when adjusted for education and especially income. However, both perceived discrimination and more traditional measures of stress are related to health and play an incremental role in accounting for differences between the races in health status. These findings underscore the need for research efforts to identify the complex ways in which economic and non-economic forms of discrimination relate to each other and combine with socio-economic position and other risk factors and resources to affect health.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67159/2/10.1177_135910539700200305.pd
Probabilistic forecasts of storm sudden commencements from interplanetary shocks using machine learning
In this study we investigate the ability of several different machine learning models to provide probabilistic predictions as to whether interplanetary shocks observed upstream of the Earth at L1 will lead to immediate (Sudden Commencements, SCs) or longer lasting magnetospheric activity (Storm Sudden Commencements, SSCs).
Four models are tested including linear (Logistic Regression), non‐linear (Naive Bayes and Gaussian Process) and ensemble (Random Forest) models, and are shown to provide skillful and reliable forecasts of SCs with Brier Skill Scores (BSSs) of ~ 0:3 and ROC scores > 0:8. The most powerful predictive parameter is found to be the range in the interplanetary magnetic field. The models also produce skillful forecasts of SSCs, though with less reliability than was found for SCs. The BSSs and ROC scores returned are ~0:21 and 0.82 respectively. The most important parameter for these predictions was found to be the minimum observed BZ.
The simple parameterization of the shock was tested by including additional features related to magnetospheric indices and their changes during shock impact, resulting in moderate increases in reliability. Several parameters, such as velocity and density, may be able to be more accurately predicted at a longer lead time, e.g. from heliospheric imagery. When the input was limited to the velocity and density the models were found to perform well at forecasting SSCs, though with lower reliability than previously (BSSs ~ 0:16, ROC Scores ~ 0:8), Finally, the models were tested with hypothetical extreme data beyond current observations, showing dramatically different extrapolations
Electromagnetic Interactions GEneRalized (EIGER) - Algorithm abstraction and HPC implementation
Modern software development methods combined with key generalizations of standard computational algorithms enable the development of a new class of electromagnetic modeling tools. This paper describes current and anticipated capabilities of a frequency domain modeling code, EIGER, which has an extremely wide range of applicability. In addition, software implementation methods and high performance computing issues are discussed
Muon-Spin Rotation Spectra in the Mixed Phase of High-T_c Superconductors : Thermal Fluctuations and Disorder Effects
We study muon-spin rotation (muSR) spectra in the mixed phase of highly
anisotropic layered superconductors, specifically Bi_2+xSr_2-xCaCu_2O_8+delta
(BSCCO), by modeling the fluid and solid phases of pancake vortices using
liquid-state and density functional methods. The role of thermal fluctuations
in causing motional narrowing of muSR lineshapes is quantified in terms of a
first-principles theory of the flux-lattice melting transition. The effects of
random point pinning are investigated using a replica treatment of liquid state
correlations and a replicated density functional theory. Our results indicate
that motional narrowing in the pure system, although substantial, cannot
account for the remarkably small linewidths obtained experimentally at
relatively high fields and low temperatures. We find that satisfactory
agreement with the muSR data for BSCCO in this regime can be obtained through
the ansatz that this ``phase'' is characterized by frozen short-range
positional correlations reflecting the structure of the liquid just above the
melting transition. This proposal is consistent with recent suggestions of a
``pinned liquid'' or ``glassy'' state of pancake vortices in the presence of
pinning disorder. Our results for the high-temperature liquid phase indicate
that measurable linewidths may be obtained in this phase as a consequence of
density inhomogeneities induced by the pinning disorder. The results presented
here comprise a unified, first-principles theoretical treatment of muSR spectra
in highly anisotropic layered superconductors in terms of a controlled set of
approximations.Comment: 50 pages Latex file, including 10 postscript figure
Permeability of Microporous Carbon Preforms
The permeability of microporous amorphous carbon preforms with varying pore size and pore distributions has been experimentally examined. The porous structures have been characterized by mercury porosimetry and by quantitative metallography of pressure-infiltration-cast metal matrix composites based on the carbon preforms. The permeability shows a linear correlation with the fraction porosity and the square of the pore diameter
Stability of self-consistent solutions for the Hubbard model at intermediate and strong coupling
We present a general framework how to investigate stability of solutions
within a single self-consistent renormalization scheme being a parquet-type
extension of the Baym-Kadanoff construction of conserving approximations. To
obtain a consistent description of one- and two-particle quantities, needed for
the stability analysis, we impose equations of motion on the one- as well on
the two-particle Green functions simultaneously and introduce approximations in
their input, the completely irreducible two-particle vertex. Thereby we do not
loose singularities caused by multiple two-particle scatterings. We find a
complete set of stability criteria and show that each instability, singularity
in a two-particle function, is connected with a symmetry-breaking order
parameter, either of density type or anomalous. We explicitly study the Hubbard
model at intermediate coupling and demonstrate that approximations with static
vertices get unstable before a long-range order or a metal-insulator transition
can be reached. We use the parquet approximation and turn it to a workable
scheme with dynamical vertex corrections. We derive a qualitatively new theory
with two-particle self-consistence, the complexity of which is comparable with
FLEX-type approximations. We show that it is the simplest consistent and stable
theory being able to describe qualitatively correctly quantum critical points
and the transition from weak to strong coupling in correlated electron systems.Comment: REVTeX, 26 pages, 12 PS figure
Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields
We construct an explicit solution of the Cauchy initial value problem for the
time-dependent Schroedinger equation for a charged particle with a spin moving
in a uniform magnetic field and a perpendicular electric field varying with
time. The corresponding Green function (propagator) is given in terms of
elementary functions and certain integrals of the fields with a characteristic
function, which should be found as an analytic or numerical solution of the
equation of motion for the classical oscillator with a time-dependent
frequency. We discuss a particular solution of a related nonlinear Schroedinger
equation and some special and limiting cases are outlined.Comment: 17 pages, no figure
- …