8 research outputs found

    Disponibilidade de nitrogênio de fontes minerais e orgânicas aplicadas em um Argissolo cultivado com videira

    No full text
    As videiras em produção tendem a aproveitar pequena quantidade do N, derivado do fertilizante mineral, mesmo cultivadas em solos com textura arenosa e baixo teor de matéria orgânica, o que confere a esses solos baixa capacidade de fornecimento de nitrogênio (N). O objetivo deste trabalho foi avaliar, por meio de incubação, a disponibilidade de nitrogênio (N) em solo com histórico de cultivo com videiras e submetido à aplicação de fontes minerais e orgânicas de nutrientes. Foram coletadas amostras de um Argissolo Vermelho, em um vinhedo e em uma área sob campo natural, no município de Rosário do Sul (RS). Após o preparo do solo, foram montados os seguintes tratamentos: solo do campo nativo; solo do vinhedo; solo do vinhedo + composto orgânico; solo do vinhedo + ureia revestida com polímeros e solo do vinhedo + ureia. Os solos foram incubados por 141 dias, e aos 0, 38, 70, 102 e 141 dias de incubação, foram determinados os teores de N-NH4+ e N-NO3-, e calculados os teores de N mineral, mineralização líquida, N mineralizado em relação ao total e o N mineral acumulado. No solo de vinhedo submetido à aplicação de ureia revestida com polímeros e de ureia, a maior mineralização de N aconteceu no período inicial. A liberação de N do composto orgânico tem um maior sincronismo com a necessidade da videira pelo nutriente. As reservas de N total potencialmente mineralizável do solo podem suprir a demanda da videira pelo N

    Organics and mineral fertilizers and biological control on the incidence of stalk rot and corn yield

    No full text
    The expansion of area under maize (Zea mays L.) and the use of no tillage have favored the incidence of stalk rot on this crop. The study aimed to evaluate the organic fertilizers and the treatment of corn seeds with Trichoderma spp. on the production of dry matter (DM) of shoot, incidence of stalk rot and corn yield. The experiment consisted in a factorial with split-plot in strips, on the randomized block design with four replicates, and the fertilization treatments (pig slurry; swine deep bedding; cattle slurry; mineral fertilizer; control treatment) were applied to the plots and the seeds treatment (with and without Trichoderma spp.) in the subplots. At the flowering stage, three corn plants per subplot were collected for the assessment of DM production. At physiological maturity stage, the incidence of stalk rot was assessed, and the ears of corn harvested for productivity assessment. The organic and mineral fertilizers increased the production of DM and productivity of corn. Trichoderma spp. increased the production of DM of corn, but had no reflection on productivity. The incidence of stalk rot in corn was higher in treatments with organic and mineral fertilization. Organic fertilizers increase dry matter production of shoot and corn yield, and Trichoderma spp. provides an increase in dry matter production of shoot

    Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources

    No full text
    The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile

    Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources

    No full text
    The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile
    corecore