2,880 research outputs found
Floral induction and flower formation : the role and potential applications of miRNAs
The multiple regulatory pathways controlling flowering and flower development are varied and complex, and they require tight control of gene expression and protein levels. MicroRNAs (miRNAs) act at both the transcriptional and post-transcriptional level to regulate key genes involved in flowering-related processes such as the juvenile–adult transition, the induction of floral competence and flower development. Many different miRNA families are involved in these processes and their roles are summarized in this review, along with potential biotechnological applications for miRNAs in controlling processes related to flowering and flower development
Systemic movement of FT mRNA and a possible role in floral induction
FLOWERING LOCUS T (FT) protein is known to be part of the mobile flowering inducing “florigen” signal in plants, but it may not be acting alone. This article reviews the data that FT mRNA can also move systemically throughout the plant and into the shoot apical meristem (SAM) independently of the FT protein. There is a promotion of flowering when increased levels of virally expressed FT mRNA are present together with endogenously produced FT protein in inducing conditions, even if the additional FT mRNA is non-translatable and thus not increasing the overall levels of FT protein. A specific sequence, or “zip code” of the FT mRNA is required for systemic movement and this sequence binds a specific protein(s) in plant extracts. This raises the possibility the FT mRNA may be moving systemically through the plant and into the SAM as an RNA–protein complex, whether FT protein is also a component of this mobile complex remains to be determined
The Lorentz Force and the Radiation Pressure of Light
In order to make plausible the idea that light exerts a pressure on matter,
some introductory physics texts consider the force exerted by an
electromagnetic wave on an electron. The argument as presented is both
mathematically incorrect and has several serious conceptual difficulties
without obvious resolution at the classical, yet alone introductory, level. We
discuss these difficulties and propose an alternate demonstration.Comment: More or less as in AJ
"Quantum Interference with Slits" Revisited
Marcella [arXiv:quant-ph/0703126] has presented a straightforward technique
employing the Dirac formalism to calculate single- and double-slit interference
patterns. He claims that no reference is made to classical optics or scattering
theory and that his method therefore provides a purely quantum mechanical
description of these experiments. He also presents his calculation as if no
approximations are employed. We show that he implicitly makes the same
approximations found in classical treatments of interference and that no new
physics has been introduced. At the same time, some of the quantum mechanical
arguments Marcella gives are, at best, misleading.Comment: 11 pages, 3 figure
Recommended from our members
Assessment of Vessel Density on Non-Contrast Computed Tomography to Detect Basilar Artery Occlusion
Introduction: Basilar artery occlusion (BAO) may be clinically occult due to variable and non-specific symptomatology. We evaluated the qualitative and quantitative determination of a hyperdense basilar artery (HDBA) on non-contrast computed tomography (NCCT) brain for the diagnosis of BAO.Methods: We conducted a case control study of patients with confirmed acute BAO vs a control group of suspected acute stroke patients without BAO. Two EM attending physicians, one third-year EM resident, and one medical student performed qualitative and quantitative assessments for the presence of a HDBA on axial NCCT images. Our primary outcome measures were sensitivity and specificity for BAO. Our secondary outcomes were inter-rater and intra-rater reliability of the qualitative and quantitative assessments.Results: We included 60 BAO and 65 control patients in our analysis. Qualitative assessment of the hyperdense basilar artery sign was poorly sensitive (54%–72%) and specific (55%–89%). Quantitative measurement improved the specificity of hyperdense basilar artery assessment for diagnosing BAO, with a threshold of 61.0–63.8 Hounsfield units demonstrating relatively high specificity of 85%–94%. There was moderate inter-rater agreement for the qualitative assessment of HDBA (Fleiss’ kappa statistic 0.508, 95% confidence interval: 0.435–0.581). Agreement improved for quantitative assessments, but still fell in the moderate range (Shrout-Fleiss intraclass correlation coefficient: 0.635). Intra-rater reliability for the quantitative assessments of the two attending physician reviewers demonstrated substantial consistency.Conclusion: Our results highlight the importance of carefully examining basilar artery density when interpreting the NCCT of patients with altered consciousness or other signs and symptoms concerning for an acute basilar artery occlusion. If the Hounsfield unit density of the basilar artery exceeds 61 Hounsfield units, BAO should be highly suspected
Spectroscopy of B_c Mesons in the Relativized Quark Model
We calculate the spectrum of the charm-beauty mesons using the relativized
quark model. Using the wavefunctions from this model we compute the radiative
widths of excited c\bar{b} states. The hadronic transition rates between
c\bar{b} states are estimated using the Kuang-Yan approach and are combined
with the radiative widths to give estimates of the relative branching ratios.
These results are combined with production rates at the Tevatron and the LHC to
suggest promising signals for excited B_c states. Our results are compared with
other models to gauge the reliability of the predictions and point out
differences.Comment: 15 pages, 1 fig. uses revtex4. References adde
Quantum simulation of multiple-exciton generation in a nanocrystal by a single photon
We have shown theoretically that efficient multiple exciton generation (MEG)
by a single photon can be observed in small nanocrystals (NCs). Our quantum
simulations that include hundreds of thousands of exciton and multi-exciton
states demonstrate that the complex time-dependent dynamics of these states in
a closed electronic system yields a saturated MEG effect on a picosecond
timescale. Including phonon relaxation confirms that efficient MEG requires the
exciton--biexciton coupling time to be faster than exciton relaxation time
Radiation from a Charge Uniformly Accelerated for All Time
A recent paper of Singal [Gen. Rel. Grav. 27 (1995), 953-967] argues that a
uniformly accelerated particle does not radiate, in contradiction to the
consensus of the research literature over the past 30 years. This note points
out some questionable aspects of Singal's argument and shows how similar
calculations can lead to the opposite conclusion.Comment: LaTeX, 9 pages, to appear in General Relativity and Gravitatio
Selection of reference genes for diurnal and developmental time-course real-time PCR expression analyses in lettuce
Background:
Real-time quantitative polymerase chain reaction (RT-qPCR) analysis is a low cost and sensitive technique that is widely used to measure levels of gene expression. Selecting and validating appropriate reference genes for normalising target gene expression should be the first step in any expression study to avoid inaccurate results.
Results:
In this study, ten candidate genes were tested for their suitability for use as reference genes in diurnal and developmental timecourse experiments in lettuce. The candidate reference genes were then used to normalise the expression pattern of the FLOWERING LOCUS T (FT) gene, one of key genes involved in the flowering time pathway whose expression is known to vary throughout the day and at different stages of development. Three reference genes, LsPP2A-1 (PROTEIN PHOSPHATASE 2A-1), LsPP2AA3 (PROTEIN PHOSPHATASE 2A REGULATORY SUBUNIT A3) and LsTIP41 (TAP42-INTERACTING PROTEIN OF 41 kDa), were the most stably expressed candidate reference genes throughout both the diurnal and developmental timecourse experiments. In the developmental experiment using just LsPP2A-1 and LsTIP41 as reference genes would be sufficient for accurate normalisation, whilst in the diurnal experiment all three reference genes, LsPP2A-1, LsPP2AA3 and LsTIP41, would be necessary. The FT expression pattern obtained demonstrates that the use of multiple and robust reference genes for RT-qPCR expression analyses results in a more accurate and reliable expression profile.
Conclusions:
Reference genes suitable for use in diurnal and developmental timecourse experiments in lettuce were identified and used to produce a more accurate and reliable analysis of lsFT expression levels than previously obtained in such timecourse experiments
- …