1,595 research outputs found

    Adaptation to the Edge of Chaos in the Self-Adjusting Logistic Map

    Full text link
    Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is governed by a low-pass filtered feedback from the dynamical variables of the system. We apply this model to the logistic map and examine the behavior of the control parameter. We find that the parameter leaves the chaotic regime. We observe a high probability of finding the parameter at the boundary between periodicity and chaos. We therefore find that this system exhibits adaptation to the edge of chaos.Comment: 3 figure

    'Heaven starts at your parents' feet' : adolescent bowing to parents and associated spiritual attitudes

    Get PDF
    In a quantitative survey of religious attitudes and practices in a multi-religious sample of 369 school pupils aged between 13 and 15 in London, the practice of bowing to parents was found widespread in 22% of adolescents spanning several religious affiliations and ethnicities – especially Buddhists, Hindus and those of Indian, African and ‘Other Asian’ ethnicity. Whether an adolescent bowed correlated significantly with spiritual attitudes such as wanting to abstain from alcohol, hearing religious stories, being inspired by religious festivals and liking the idea of seeing God in everything. Findings suggest bowing to parents can have religious significance on all three levels of Jackson’s Interpretive Approach and therefore cannot be regarded as a ‘cultural accretion’ of religion. Study of bowing to parents could form a unifying exercise in shared values for study of religion in the plural classroom and facilitate community cohesion in certain religious membership groups

    Proglacial groundwater storage dynamics under climate change and glacier retreat

    Get PDF
    Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater‐fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate‐glacier‐groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio‐hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface‐groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater‐fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year‐round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30‐day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30‐day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats

    Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial.

    Get PDF
    Apolipoprotein L1 gene (APOL1) G1 and G2 coding variants are strongly associated with chronic kidney disease (CKD) in African Americans (AAs). Here APOL1 association was tested with baseline estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (UACR), and prevalent cardiovascular disease (CVD) in 2571 AAs from the Systolic Blood Pressure Intervention Trial (SPRINT), a trial assessing effects of systolic blood pressure reduction on renal and CVD outcomes. Logistic regression models that adjusted for potentially important confounders tested for association between APOL1 risk variants and baseline clinical CVD (myocardial infarction, coronary, or carotid artery revascularization) and CKD (eGFR under 60 ml/min per 1.73 m(2) and/or UACR over 30 mg/g). AA SPRINT participants were 45.3% female with a mean (median) age of 64.3 (63) years, mean arterial pressure 100.7 (100) mm Hg, eGFR 76.3 (77.1) ml/min per 1.73 m(2), and UACR 49.9 (9.2) mg/g, and 8.2% had clinical CVD. APOL1 (recessive inheritance) was positively associated with CKD (odds ratio 1.37, 95% confidence interval 1.08-1.73) and log UACR estimated slope (β) 0.33) and negatively associated with eGFR (β -3.58), all significant. APOL1 risk variants were not significantly associated with prevalent CVD (1.02, 0.82-1.27). Thus, SPRINT data show that APOL1 risk variants are associated with mild CKD but not with prevalent CVD in AAs with a UACR under 1000 mg/g

    Some observations on meaningful and objective inference in radioecological field studies

    Get PDF
    1. Anthropogenic releases of radiation are of ongoing importance for environmental protection, but the radiation doses at which natural systems begin to show effects are controversial. More certainty is required in this area to achieve optimal regulation for radioactive substances. We recently carried out a large survey (268 sampled animals and 20 sites) of the association between environmental radiation exposures and small mammal gut-associated microbiomes (fungal and bacterial) in the Chornobyl Exclusion zone (CEZ). Using individual measurements of total absorbed dose rates and a study design and analyses that accounted for spatial non-independence, we found no, or only limited, association. 2. Watts et al. have criticised our study: for not filtering candidate non-resident components prior to our fungal microbiome analyses, for our qualified speculations on the relative merits of faecal and gut samples, and for the design of our study which they felt lacked sufficient replication. 3. The advantage of filtering non-resident-fungal taxa is not clear and it would not have changed the null (spatially adjusted) association we found between radioactive dose and mycobiome composition because the most discriminatory fungal taxa with regard to dose were non-resident taxa. 4. We maintain that it was legitimate for us to make qualified discussion comments on the differences in results between our faecal and gut microbiome analyses and on the relative merits of these sample types. 5. Most importantly, the criticism of our study design by Watts et al. and the designs and analysis of their recent studies in the CEZ show a misunderstanding of the true nature of independent replication in field studies. Recognising the importance of spatial non-independence is essential in the design and analysis of radioecological field surveys
    • …
    corecore