57 research outputs found
Recommended from our members
Adaptive coding in the human brain: Distinct object features are encoded by overlapping voxels in frontoparietal cortex.
Our ability to flexibly switch between different tasks is a key component of cognitive control. Non-human primate (NHP) studies (e.g., Freedman, Riesenhuber, Poggio, & Miller, 2001) have shown that prefrontal neurons are re-used across tasks, re-configuring their responses to code currently relevant information. In a similar vein, in the human brain, the "multiple demand" (MD) system is suggested to exert control by adjusting its responses, selectively processing information in line with our current goals (Duncan, 2010). However, whether the same or different resources (underlying neural populations) in the human brain are recruited to solve different tasks remains elusive. In the present study, we aimed to bridge the gap between the NHP and human literature by examining human functional imaging data at an intermediate level of resolution: quantifying the extent to which single voxels contributed to multiple neural codes. Participants alternated between two tasks requiring the selection of feature information from two distinct sets of objects. We examined whether neural codes for the relevant stimulus features in the two different tasks depended on the same or different voxels. In line with the electrophysiological literature, MD voxels were more likely to contribute to multiple neural codes than we predicted based on permutation tests. Comparatively, in the visual system the neural codes depended on distinct sets of voxels. Our data emphasise the flexibility of the MD regions to re-configure their responses and adaptively code relevant information across different tasks
Recommended from our members
Concurrent neuroimaging and neurostimulation reveals a causal role for dlPFC in coding of task-relevant information.
Dorsolateral prefrontal cortex (dlPFC) is proposed to drive brain-wide focus by biasing processing in favour of task-relevant information. A longstanding debate concerns whether this is achieved through enhancing processing of relevant information and/or by inhibiting irrelevant information. To address this, we applied transcranial magnetic stimulation (TMS) during fMRI, and tested for causal changes in information coding. Participants attended to one feature, whilst ignoring another feature, of a visual object. If dlPFC is necessary for facilitation, disruptive TMS should decrease coding of attended features. Conversely, if dlPFC is crucial for inhibition, TMS should increase coding of ignored features. Here, we show that TMS decreases coding of relevant information across frontoparietal cortex, and the impact is significantly stronger than any effect on irrelevant information, which is not statistically detectable. This provides causal evidence for a specific role of dlPFC in enhancing task-relevant representations and demonstrates the cognitive-neural insights possible with concurrent TMS-fMRI-MVPA
Recommended from our members
Concurrent neuroimaging and neurostimulation reveals a causal role for dlPFC in coding of task-relevant information.
Dorsolateral prefrontal cortex (dlPFC) is proposed to drive brain-wide focus by biasing processing in favour of task-relevant information. A longstanding debate concerns whether this is achieved through enhancing processing of relevant information and/or by inhibiting irrelevant information. To address this, we applied transcranial magnetic stimulation (TMS) during fMRI, and tested for causal changes in information coding. Participants attended to one feature, whilst ignoring another feature, of a visual object. If dlPFC is necessary for facilitation, disruptive TMS should decrease coding of attended features. Conversely, if dlPFC is crucial for inhibition, TMS should increase coding of ignored features. Here, we show that TMS decreases coding of relevant information across frontoparietal cortex, and the impact is significantly stronger than any effect on irrelevant information, which is not statistically detectable. This provides causal evidence for a specific role of dlPFC in enhancing task-relevant representations and demonstrates the cognitive-neural insights possible with concurrent TMS-fMRI-MVPA
Recommended from our members
The association between pain-induced autonomic reactivity and descending pain control is mediated by the periaqueductal grey.
There is a strict interaction between the autonomic nervous system (ANS) and pain, which might involve descending pain modulatory mechanisms. The periaqueductal grey (PAG) is involved both in descending pain modulation and ANS, but its role in mediating this relationship has not yet been explored. Here, we sought to determine brain regions mediating ANS and descending pain control associations. Thirty participants underwent conditioned pain modulation (CPM) assessments, in which they rated painful pressure stimuli applied to their thumbnail, either alone or with a painful cold contralateral stimulation. Differences in pain ratings between ‘pressure-only’ and ‘pressure + cold’ stimuli provided a measure of descending pain control. In 18 of the 30 participants, structural scans and two functional MRI assessments, one pain-free and one during cold-pain were acquired. Heart rate variability (HRV) was simultaneously recorded. Normalised low-frequency HRV (LF-HRVnu) and the CPM score were negatively correlated; individuals with higher LF-HRVnu during pain reported reductions in pain during CPM. PAG-ventro-medial prefrontal cortex (vmPFC) and PAG-rostral ventromedial medulla (RVM) functional connectivity correlated negatively with the CPM. Importantly, PAG-vmPFC functional connectivity mediated the strength of the LF-HRVnu-CPM association. CPM response magnitude was also negatively correlated with vmPFC GM volume. Our multi-modal approach, using behavioural, physiological and MRI measures, provides important new evidence of interactions between ANS and descending pain mechanisms. ANS dysregulation and dysfunctional descending pain modulation are characteristics of chronic pain. We suggest that further investigation of body-brain interactions in chronic pain patients may catalyse the development of new treatments
Recommended from our members
Sustained perturbation in functional connectivity induced by cold pain.
BACKGROUND: Functional connectivity (FC) perturbations have been reported in multiple chronic pain phenotypes, but the nature of reported changes varies between cohorts and may relate to the consequences of living with chronic-pain related comorbidities, such as anxiety and depression. Healthy volunteer studies provide opportunities to study the effects of tonic noxious stimulation independently of these sequelae. Connectivity changes in task negative and positive networks, for example, the default mode and salience networks (DMN/SN), respectively, have been described, but how these and other connectivity networks, for example, those governing descending pain control are affected by the presence of tonic, noxious stimulation in healthy, pain-free individuals, remains unknown. METHOD: In 20 healthy volunteers, we assessed FC prior to, during, and following tonic cold painful stimulation in the ventromedial prefrontal cortex (vmPFC), rostral anterior insula (rAI), subgenual anterior cingulate cortex (ACC) and periaqueductal grey (PAG). We also recorded subjectively reported pain using a computerised visual analogue scale. RESULTS: We saw DMN FC changes during painful stimulation and that inter-network connectivity between the rAI with the vmPFC increased during pain, whereas PAG-precuneus FC decreased. Pain-induced FC alterations persisted following noxious stimulation. FC changes related to the magnitude of individuals' subjectively reported pain. CONCLUSIONS: We demonstrate FC changes during and following tonic cold-pain in healthy participants. Similarities between our findings and reports of patients with chronic pain suggest that some FC changes observed in these patients may relate to the presence of an ongoing afferent nociceptive drive. SIGNIFICANCE: How pain-related resting state networks are affected by tonic cold-pain remains unknown. We investigated functional connectivity alterations during and following tonic cold pain in healthy volunteers. Cold pain perturbed the functional connectivity of the ventro-medial prefrontal cortex, anterior insula, and the periacquaductal grey area. These connectivity changes were associated with the magnitude of individuals' reported pain. We suggest that some connectivity changes described in chronic pain patients may be due to an ongoing afferent peripheral drive.This work was funded by a Medical
Research Council Experimental Medicine
Challenge Grant (MR/N026969/1). MAH,
SM, OO and SW are also supported by
the NIHR Biomedical Research Centre for
Mental Health at the South London and
Maudsley NHS Trust. JOM is supported
by a Sir Henry Dale Fellowship jointly
funded by the Welcome Trust and the Royal
Society (grant number 206675/Z/17/Z) and
a Medical Research Council (MRC) Centre
grant (MR/N026063/1)
Recommended from our members
Linking Pain Sensation to the Autonomic Nervous System: The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks.
There are bi-directional interactions between the autonomic nervous system (ANS) and pain. This is likely underpinned by a substantial overlap between brain areas of the central autonomic network and areas involved in pain processing and modulation. To date, however, relatively little is known about the neuronal substrates of the ANS-pain association. Here, we acquired resting state fMRI scans in 21 healthy subjects at rest and during tonic noxious cold stimulation. As indicators of autonomic function, we examined how heart rate variability (HRV) frequency measures were influenced by tonic noxious stimulation and how these variables related to participants' pain perception and to brain functional connectivity in regions known to play a role in both ANS regulation and pain perception, namely the right dorsal anterior cingulate cortex (dACC) and periaqueductal gray (PAG). Our findings support a role of the cardiac ANS in brain connectivity during pain, linking functional connections of the dACC and PAG with measurements of low frequency (LF)-HRV. In particular, we identified a three-way relationship between the ANS, cortical brain networks known to underpin pain processing, and participants' subjectively reported pain experiences. LF-HRV both at rest and during pain correlated with functional connectivity between the seed regions and other cortical areas including the right dorsolateral prefrontal cortex (dlPFC), left anterior insula (AI), and the precuneus. Our findings link cardiovascular autonomic parameters to brain activity changes involved in the elaboration of nociceptive information, thus beginning to elucidate underlying brain mechanisms associated with the reciprocal relationship between autonomic and pain-related systems
A global experiment on motivating social distancing during the COVID-19 pandemic
Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges
In COVID-19 Health Messaging, Loss Framing Increases Anxiety with Little-to-No Concomitant Benefits: Experimental Evidence from 84 Countries
The COVID-19 pandemic (and its aftermath) highlights a critical need to communicate health information effectively to the global public. Given that subtle differences in information framing can have meaningful effects on behavior, behavioral science research highlights a pressing question: Is it more effective to frame COVID-19 health messages in terms of potential losses (e.g., "If you do not practice these steps, you can endanger yourself and others") or potential gains (e.g., "If you practice these steps, you can protect yourself and others")? Collecting data in 48 languages from 15,929 participants in 84 countries, we experimentally tested the effects of message framing on COVID-19-related judgments, intentions, and feelings. Loss- (vs. gain-) framed messages increased self-reported anxiety among participants cross-nationally with little-to-no impact on policy attitudes, behavioral intentions, or information seeking relevant to pandemic risks. These results were consistent across 84 countries, three variations of the message framing wording, and 560 data processing and analytic choices. Thus, results provide an empirical answer to a global communication question and highlight the emotional toll of loss-framed messages. Critically, this work demonstrates the importance of considering unintended affective consequences when evaluating nudge-style interventions
Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study
Introduction:
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods:
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings:
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation:
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
- …