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a b s t r a c t

Our ability to flexibly switch between different tasks is a key component of cognitive

control. Non-human primate (NHP) studies (e.g., Freedman, Riesenhuber, Poggio, & Miller,

2001) have shown that prefrontal neurons are re-used across tasks, re-configuring their

responses to code currently relevant information. In a similar vein, in the human brain, the

“multiple demand” (MD) system is suggested to exert control by adjusting its responses,

selectively processing information in line with our current goals (Duncan, 2010). However,

whether the same or different resources (underlying neural populations) in the human brain

are recruited to solve different tasks remains elusive. In the present study, we aimed to

bridge the gap between the NHP and human literature by examining human functional

imaging data at an intermediate level of resolution: quantifying the extent to which single

voxels contributed to multiple neural codes. Participants alternated between two tasks

requiring the selection of feature information from two distinct sets of objects. We

examined whether neural codes for the relevant stimulus features in the two different

tasks depended on the same or different voxels. In line with the electrophysiological

literature, MD voxels were more likely to contribute to multiple neural codes than we

predicted based on permutation tests. Comparatively, in the visual system the neural

codes depended on distinct sets of voxels. Our data emphasise the flexibility of the MD

regions to re-configure their responses and adaptively code relevant information across

different tasks.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
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1. Introduction

To function successfully, we need a cognitive system that can

select what is relevant for our behaviour and ignore distrac-

tion. Moreover, this system needs to constantly update the

way it responds, to meet the requirements of our current

goals. However, we do yet not fully understand how the

human brain is able to swiftly adjust its processing priorities

in response to our constantly updated goals.

Different mechanisms may underlie our ability to do this

efficiently. For example, performance across different tasks

could rely on distinct specialised neural resources. The rule

abstraction model of prefrontal function (Badre, 2008; Badre &

D'Esposito, 2009) suggests a rostrocaudal gradient where

distinct regions are recruited according to differing task de-

mands. An alternative possibility is that neurons may flexibly

code many different types of task information. The adaptive

coding hypothesis (ACH), proposes that context-specific pa-

rameters shape the tuning profile of higher cortical neurons

(Duncan, 2001, 2010). Rather than being tuned to specific fea-

tures in the environment, these neurons are proposed to have

highly adaptable response properties, coding information ac-

cording to what is currently relevant for behaviour.

Evidence for ‘adaptive coding’ stems primarily from NHPs.

Prefrontal neurons flexibly encode the behavioural signifi-

cance of visual stimuli (i.e., coding is dependent on task pa-

rameters), regardless of their physical properties (e.g., Cromer,

Roy, & Miller, 2010; Freedman, Riesenhuber, Poggio, & Miller,

2001; Roy, Riesenhuber, Poggio, & Miller, 2010). For example,

in Cromer and colleagues' (2010) study, NHPs classified stimuli

according to an arbitrary category boundary. Individual pre-

frontal neurons displayed tuning profiles that were aligned

with the task-relevant decision space. When NHPs were

required to classify a second group of stimuli according to a

new decision boundary, the firing rate of 44% of these neurons

changed to reflect the new task. These data emphasise that

the response of prefrontal neurons changes flexibly to reflect

the currently relevant information. In thisway, single neurons

are re-used in multiple neural codes.

In the human brain, the MD regions are considered

candidate regions for adaptive coding (e.g., Duncan, 2010).

They are defined as regions that are active for a wide range of

task demands (Duncan & Owen, 2000; Fedorenko, Duncan, &

Kanwisher, 2013) and consist of cortex in and around the

inferior frontal sulcus (IFS), anterior insula/frontal operculum

(AI/FO), pre-supplementary motor area and dorsal anterior

cingulate (pre-SMA/ACC), and intraparietal sulcus (IPS). Using

multi-voxel pattern analysis (MVPA), these regions have been

shown to code a range of task features (e.g., Bode & Haynes,

2009; Erez & Duncan, 2015; Harel, Kravitz, & Baker, 2014;

Haynes et al., 2007; Nee & Brown, 2012; Reverberi, Gorgen, &

Haynes, 2011; Stiers, Mennes, & Sunaert, 2010; Woolgar,

Jackson, & Duncan, 2016; Woolgar, Williams, & Rich, 2015)

and these codes adjust when task demands vary (Li, Ostwald,

Giese, & Kourtzi, 2007; Woolgar, Hampshire, Thompson, &

Duncan, 2011; Woolgar, Afshar, Williams, & Rich, 2015;

Woolgar, Williams, et al., 2015). Moreover, we have demon-

strated that MD codes emphasise different aspects of visual

objects as required by the current task (Jackson, Rich,
Williams, & Woolgar, 2017). At the level of whole regions at

least, the MD regions appear to code different task informa-

tion according to what is currently relevant for behaviour.

The ACH and NHP studies (e.g., Cromer et al., 2010)

consider the responses of individual neurons. However,

neuroimaging studies of MD function have only examined

whole region responses. Do the human results reflect adap-

tive coding of individual neurons, like that of NHPs, or do

they simply reflect the responses of multiple independent

specialised neural populations that lie within the MD re-

gions? Here, we intended to bridge the gap between the

human and NHP data by considering an intermediate level of

resolution: the extent to which different neural codes load

on the same individual voxels. We refer to this as “voxel re-

use”, an index of the extent to which the same voxels

contribute maximally to the multivoxel codes for two

distinct task features. To examine this, we first usedMVPA to

extract the multi-voxel codes that distinguished the task-

relevant features of objects in two separate tasks. Then, we

developed amethod tomeasure the extent to which the same

voxels in the MD regions were re-used in the two codes

(coding relevant information for different groups of objects).

We compared the extent of voxel re-use against the chance-

level derived from permuting the data. At this intermediate

level of resolution, single voxels could of course still sample

multiple overlapping neural populations, so we cannot draw

conclusions at the single neuron level. However, we

reasoned that if the two codes depended on independent

voxel populations within the MD regions, this would provide

evidence against the ACH. We predicted that the same MD

voxels would contribute to coding of relevant information

across different tasks, whilst voxels in more specialised

brain regions (early visual cortex) would not.
2. Materials and methods

2.1. Participants

Twenty-six participants (17 females; mean age ¼ 23.9 years,

SD ¼ 4.56) were recruited from the Macquarie University

Psychology Participant Pool. All participants were right-

handed with normal or corrected-to-normal vision and no

history of neurological or psychiatric disorder. Participants

gave written informed consent and received $50. The experi-

ment was approved by the human research ethics committee

of Macquarie University (Sydney, Australia).

2.2. Stimuli

The stimulus set consisted of abstract novel “spiky” and

“smoothy” objects (Fig. 1) created using customMatLab scripts

(Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006). One “spike”

of the spiky objects varied along two dimensions (length/

orientation) and one “spheroid” of the smoothy objects also

varied along two dimensions (breadth/height). The design

followed our previous work (Jackson et al., 2017), but following

a hint in the NHP literature that neural re-use may be larger

for dissimilar object tasks (Cromer et al., 2010), we chose to

test voxel re-use across two distinct sets of objects.

https://doi.org/10.1016/j.cortex.2018.07.006
https://doi.org/10.1016/j.cortex.2018.07.006


Fig. 1 e Stimulus set. The stimulus set consisted of 32 objects total. The visual angle of the spiky object's length along its

main axis was 8.07� and for the smoothy objects it was 8.56�. One “spike” of the spiky objects varied along two dimensions

(its length and orientation) and one “spheroid” of the smoothy objects also varied along two dimensions (its breadth and

height). Participants categorised the spiky objects according to the orientation dimension; the length dimensionwas always

irrelevant. For the second task, participants categorised the smoothy objects according to breadth dimension; the height

dimension was always irrelevant. Stimuli were presented at central fixation on a screen and viewed through a mirror

mounted on the head coil in the scanner.
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Participants performed two tasks. In one task, participants

discriminated between the spiky objects based on the orien-

tation dimension (rotated clockwise vs. anti-clockwise spikes).

For the second task, subjects discriminated the smoothy ob-

jects based on the breadth dimension (wide vs. narrow

spheroid). Stimulus presentation was controlled by a PC

running the Psychophysics Toolbox-3 package (Brainard,

1997) in Matlab (Mathworks).

2.3. Procedure

Prior to entering the scanner participants practised the task

and stimuli were titrated to match the difficulty between the

tasks (See S1). Participants then completed 4 acquisition runs

(8.09 min each) consisting of 4 blocks of 128 trials. At the start

of each block, a cue (4000 msec) indicated the current task

(orientation of the spikes, breadth of the spheroids; block

order counterbalanced within and across participants), see

Fig. 2. The cue also indicated which attribute was category 1

and 2 (e.g., whether rotated clockwise/anti-clockwise spikes

were category 1 or 2; counterbalanced across participants). On

each trial, participants saw a white central cross (500 msec)

followed by an object (216 msec) that they categorised ac-

cording to the current task. Finally, participants saw a

response mapping screen that indicated the category-to-

button response mapping on this trial. At the end of each

block participants saw feedback (% correct; 6000 msec) then a

blank screen (4000msec). At the end of each run, an additional

blank black screen was shown for 4000 msec.

Participants also completed a localiser task to functionally

identify the lateral occipital complex (LOC) as a region-of-

interest (ROI). Participants viewed centrally presented intact
and scrambled versions of black and white natural objects in

16.8s blocks of 16 trials (1100 msec/trial), whilst attending to a

central fixation cross. Participants pressed a button each time

the fixation cross changed colour. There were 21 blocks con-

sisting of alternating blocks of whole objects, scrambled ob-

jects, and rest. The localiser took 6.25 min.

2.4. Data acquisition

FMRI data were collected using a 3T Siemens Verio Magnetic

Resonance Imaging scanner at Macquarie University Hospital.

We used a sequential descending T2*- weighted echo planar

imaging (EPI) acquisition sequence: acquisition time

2000msec; echo time 30msec; 34 oblique axial slices collected

in descending order; slice thickness 3.0 mm; .70 mm inter-

slice gap; in plane resolution 3.0 � 3.0 mm; matrix 64 � 64;

field of view 210 mm; flip angle 78�. We also acquired T1-

weighted MPRAGE structural images (slice thickness 1.0 mm,

resolution 1.0 � 1.0 mm).

2.5. Preprocessing

MRI datawere preprocessedusing SPM 5 and SPM12 (Wellcome

Department of Imaging Neuroscience, www. fil.ion.ucl.ac.uk/

spm) inMatlab 2011b. FunctionalMRI datawere converted from

DICOM to NIFTII format, spatially realigned to the first func-

tional scan and slice timing corrected. EPIs from the main

experiment were smoothed slightly (4 mm FWHM Gaussian

kernel) to improve signal-to-noise ratio, as in our previouswork

(Woolgar, Afshar, et al., 2015; Woolgar, Williams, et al., 2015;

Jackson et al., 2017). Localiser EPIs were also smoothed (8 mm

FWHMGaussian kernel) and in all cases thedatawere high pass

https://doi.org/10.1016/j.cortex.2018.07.006
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Fig. 2 e Stimulus categorisation task. A picture cue at the start of each block indicated the current task: Breadth (smoothy

task) or orientation (spiky task). The inset shows cue display for both the orientation and breadth task. On each trial a

fixation cross was presented for 500 msec followed by an object for 216 msec. Finally, a response mapping screen appeared

which indicated the appropriate response button. The response mapping screen randomly assigned category 1 and 2

decisions to either the left or right response button, operated by the index or middle finger of the participant's right hand.

The response mapping screen was visible until a button-press was made or until the jittered time interval timed out

(2000e3000 msec). If a response was made before the end of the inter-trial interval, a blank black screen was shown for the

remainder of the trial time. In the example shown here, the current task is breadth (smoothy). For the first trial, the stimulus

is category 2 on the breadth dimension and therefore the correct response was the right-button.

c o r t e x 1 0 8 ( 2 0 1 8 ) 2 5e3 428
filtered (128s). Structural scans were co-registered to the mean

EPI and normalised, using the segment and normalise routine

of SPM5, to derive the normalisation parameters needed for ROI

definition and to normalise individual participant searchlight

classification maps.

2.6. Regions of interest

MD ROIs were defined using co-ordinates from a previous

review of activity associated with a diverse set of cognitive

demands (Duncan & Owen, 2000) using the kernel method

described in Cusack, Mitchell, and Duncan (2010) as in our

previous work (Woolgar, Hampshire, et al., 2011; Woolgar,

Thompson, Bor, & Duncan, 2011; Woolgar, Williams, et al.,

2015; Jackson et al., 2017).

Left and right Brodmann area 17 (BA 17) were derived from

the Brodmann template providedwithMRIcro (Rorden& Brett,

2000). Left and right inferior temporal cortex (IT) were derived

from the HarvardeOxford Cortical Structural Atlas provided

with FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,

2012). MD, BA17 and IT ROIs were deformed for each partici-

pant by applying the inverse of the participant's normalisation

parameters. This allowed analyses to be carried out using

native space EPI data.

We defined LOC for each participant, based on the func-

tional localiser scan, as the lateral occipital area that
responded more strongly to pictures of natural/madeemade

objects than to scrambled versions of the same objects. We

used the standard multiple regression approach of SPM to

estimate values pertaining to the whole and scrambled object

conditions. Blocks were modelled using a box car function

lasting 16s convolved with the hemodynamic response of

SPM. The run mean was included in the model as a covariate

of no interest. Whole-brain mass univariate analyses (paired

t-tests) compared voxelwise BOLD response in the two con-

ditions (whole objectsescrambled objects). The resulting map

was thresholded such that there was at least one cluster with

a minimum size of 20 voxels. We selected one left and one

right cluster of activation close to anatomical LOC coordinates

from previous studies (Grill-Spector, Kushnir, Hendler, &

Malach, 2000; Grill-Spector et al., 1999).

2.7. First-level model

To obtain activation patterns for MVPA, we estimated a Gen-

eral Linear Model (GLM). We estimated the responses to the

relevant and irrelevant features of the two sets of stimuli. For

spiky objects, the relevant feature was the orientation of the

spike (rotated clockwise/anti-clockwise) and the irrelevant

feature was the length of the spike (short/long). For smooth-

ies, the relevant feature was the breadth of the spheroid

(wide/narrow) and the irrelevant feature was the height of the

https://doi.org/10.1016/j.cortex.2018.07.006
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spheroid (tall/short). Every trial contributed to the estimation

of two beta values; the relevant and the irrelevant feature.

Trials were modelled as events of zero duration at stimulus

onset convolved with the hemodynamic response of SPM5.

We estimated the response for each feature (spikies; clockwise/

anticlockwise and short/long, smoothies; wide/narrow and tall/

short) in each block separately. The run means were included

in the model as covariates of no interest. Error trials were

excluded.

2.8. MVPA

Our aim was to investigate whether MD voxels contribute to

multiple codes for relevant stimulus information in distinct

groups of objects. We first established the patterns used to

code for relevant information in each task, and tested the

reliability of these patterns, prior to testing whether the same

voxels were used in these codes.

2.8.1. Decoding task information
We used a standard cross-generalisation MVPA approach to

test the reliability of multi-voxel codes for relevant and

irrelevant features of the two sets of stimuli using The

Decoding Toolbox (Hebart, G€orgen, &Haynes, 2015). For each

participant and ROI, we trained a linear support vector ma-

chine (lSVM) to decode the relevant (clockwise or anti-

clockwise for spikies, and wide or narrow for smoothies)

and irrelevant (short or long for spikies, and tall or thin for

smoothies) stimulus features for both groups of objects (see

S2. for further details). We predicted, based on our previous

work (Jackson et al., 2017) that the MD network would show

significant, and preferential, coding of task relevant

information.

To identify any further regions showing coding of task-

relevant or irrelevant information, we also performed an

exploratory analysis in which we carried out classification

across the whole brain using a roaming searchlight

(Kriegeskorte, Goebel, & Bandettini, 2006). For each partici-

pant, data were extracted from a spherical ROI (radius 5 mm)

centred in turn on each voxel in the brain. A lSVMwas trained

and tested using data from each sphere, and the classification

accuracy value for that sphere was assigned to the central

voxel. This yielded whole-brain accuracy maps for each indi-

vidual. Accuracy maps were normalised and smoothed using

an 8mmFWHMGaussian kernel for group-level analysis (one-

sample t-test at each voxel). The results were thresholded at p

< .001 with an extent threshold of 20 voxels. All coordinates

are given in MNI152 space (McConnell Brain Imaging Centre,

Montreal Neurological Institute).

2.8.2. Decoding the categorical level of the decision
We conducted an additional analysis to explore whether the

decision that wasmade by the participantswas represented at

the level of the stimulus (e.g., short/tall) or at the level of the

category number (category 1/category 2). For this, we trained

the classifier on data representing the category number de-

cisions in one task (Breadth task; category 1/category 2) and

tested on the category number decisions in the other task

(Height task; category 1/category 2), and vice versa.
2.8.3. Overlapping multi-voxel codes for relevant information
We developed an extension of MVPA to extract the voxels

contributing the most signal to our multi-voxel codes, and to

interrogate whether these voxels were the same voxels across

multiple codes.

First, we identified the voxels that contributed the most

signal to the stimulus discriminations using a transformation

of the classifier weights (Haufe et al., 2014). For each partici-

pant and ROI, we trained a linear support vector machine

classifier using all the data (8 blocks) in each task separately

(e.g., clockwise vs anti-clockwise in the 8 spiky blocks). From

this we extracted the weight assigned to each voxel by the

classifier, and transformed it to an index of discriminatory

signal strength by multiplying the classifier weights by the

covariance in the data (Haufe et al., 2014). This transformation

is necessary to recover the extent to which each voxel

contributed signal to each multivoxel pattern. Akin to trans-

forming the backward model (the multivariate classifier,

which attempts to extract neural information from the fMRI

data) to a forward model (which would specify the fMRI data

given the neural information) the transformed weights are

neurophysiologically interpretable, whereas the raw weights

may, for example, be high for voxels that give a good estimate

of covarying noise, and are therefore statistically independent

of the neural signal of interest (Haufe et al., 2014).

We then calculated the voxel re-use index between the top

10% of voxels contributing the most signal to our two task-

relevant codes. To do so we identified the voxels with high-

est (top 10%) transformed weights for orientation coding in

the spiky blocks and the top 10% of voxels contributing the

most signal to breadth coding in the smoothy task blocks, and

asked howmany of thesewere the same voxels.We expressed

this value as a proportion. For example, if 40 out of the 200

voxels in an ROI that contributed the highest signal to the

discrimination of orientation were also amongst the 200

voxels that contributed the highest signal to the discrimina-

tion of breadth, then the proportion of overlap (voxel re-use)

was 40/200 ¼ .2 (20%). We repeated this procedure for every

participant, in each ROI separately.

Finally, we used a two-step permutation test (Stelzer,

Chen, & Turner, 2013) to test whether the extent of voxel re-

use in our data exceeds the extent expected by chance. For

this, we trained a classifier on permuted condition labels and

calculated voxel re-use. Next, we built a group level null dis-

tribution to calculate the probability of observing the actual

voxel re-use value given the group null distribution (refer to

S3. for further details). This approach accounts for within-

subject factors such as vasculature that could lead to certain

voxels having higher classification weights in multiple dis-

criminations for uninteresting reasons.

This measure of voxel re-use is only meaningful in regions

where patterns of activation reliably discriminated between

the stimuli in the first place, so for our main analysis, we only

calculated voxel re-use in conditions where information

coding was above chance in the previous analysis. However,

as a sanity check, we checked whether voxel re-use was at

chance when information coding was at chance, and

compared the proportion of voxel re-use between the task-

relevant and task-irrelevant conditions in the MD network.

https://doi.org/10.1016/j.cortex.2018.07.006
https://doi.org/10.1016/j.cortex.2018.07.006
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3. Results

3.1. Behavioural results

Prior to scanning, the stimulus set was titrated to match re-

action times between the two tasks for each participant

separately (assessed with Bayes factor analysis for each

participant separately, using a threshold of BF < 1, all actual

BF10 < .76) (Dienes, 2011; Love et al., 2015). In the scanning

session, participants performed with a high degree of accu-

racy (94.2%, SD ¼ 7.1). There were no differences in accuracy

between the two conditions for any participant individually

(all BF10 < .89). The average reaction time from stimulus onset

in the scanner was 690 msec (SD ¼ 121 msec). Reaction time

data from the scanning sessionwaswere not analysed further

as the response mapping screen prevented an immediate

response following stimulus onset.

3.2. Decoding of relevant and irrelevant stimulus
features

3.2.1. MD regions
We predicted that the MD regions would prioritise coding of

task-relevant features over task-irrelevant features. As can be
Fig. 3 e Decoding in MD network (A) and visual cortices (B). Cod

MD regions (A) and BA 17 (B). Error bars indicate standard error.

coding was significantly greater that chance in each condition

significance marking between bars indicate where coding was

distinctions (main effect of relevancy/paired t-test). **p < .01, alp

using Bonferroni correction (alpha level ¼ .0125). The MD regio

than the task-irrelevant distinctions. Coding across average MD

coded in 3 MD ROIs; ACC/pre-SMA, MA 56.1%, p < .001; IPS, MA 5

that did not reach our Bonferroni corrected significance level (M

information in any of the MD regions. An ANOVA on BA 17 cla

interactions indicating that coding in this region was not modu
seen in Fig. 3 (left panel), this was the case. A three-way

ANOVA with factors relevancy, region and object revealed a

main effect of relevancy (F(1,25)¼ 14.5, p¼ .001), corresponding

to stronger representation of the relevant compared to irrel-

evant stimulus dimensions. No other main effects or in-

teractions were significant (all ps > .11). One sample t-tests

confirmed that these regions only encoded the task-relevant

stimulus distinctions (mean accuracy (MA) 55.8%,

[t(25) ¼ 3.93, p < .001]) and not the irrelevant ones (MA 48.6%).

3.2.2. Visual cortices
We tested whether information pertaining to task-relevant

and task-irrelevant features was coded in BA17 (Fig. 3, right

panel). An ANOVAwith factors relevancy and object showed no

main effects or interactions (all ps > .32). Thus, we found no

evidence that context modulates coding of feature informa-

tion in this region. However, BA 17 did show above chance

classification of these objects according to both the relevant

(relative to chance, MA 56.2%; [t(25) ¼ 2.35, p ¼ .002]) and the

task-irrelevant (relative to chance; MA 55.8%; [t(25) ¼ 2.95,

p¼ .006]) stimulus features, as predicted for a stimulus-driven

response.

We tested whether object-responsive cortex (LOC) coded

task information using an ANOVA with factors relevancy and
ing of task-relevant and irrelevant stimulus distinctions in

Significance markings for individual bars indicate whether

separately (one-sample t test against chance, 50%),

significantly greater for relevant compared to irrelevant

ha for individual MD regions corrected for four comparisons

ns coded task-relevant feature distinctions more strongly

¼ 55.8%, p < .001. Relevant stimulus distinctions were

7.3%, p < .001; IFS, MA 56.4%, p < .001, with a trend in AI/FO

A 53.6%, p ¼ .04). There was no coding of irrelevant feature

ssification results showed no significant main effects or

lated by behavioural relevance.

https://doi.org/10.1016/j.cortex.2018.07.006
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object (collapsed over left and right clusters). There were no

main effects of interactions (all ps > .19). When we compared

coding to chance, the LOC did not carry significant informa-

tion about task relevant or irrelevant distinctions (all ps > .19).

3.2.3. Inferior temporal cortex
As IT has previously been shown to be involved in categorical

distinctions (e.g., Kriegeskorte et al., 2008) we tested whether

this region coded information about the categorical distinc-

tions in this paradigm (ANOVA with factors relevancy and ob-

ject). There were no main effects or interactions (all ps > .1) or

evidence of coding above chance for the relevant or irrelevant

categorical distinctions of our novel objects (all ps > .1).

3.2.4. Searchlight
To identify any additional regions coding task-relevant in-

formation, we conducted an exploratory analysis using a

roaming searchlight. We assessed the results with cluster-

level family wise error (FWE) correction for multiple compar-

isons (voxelwise threshold: p < .001 uncorrected). This

revealed one large cluster, centred on the precuneus bilater-

ally and extending into the superior parietal lobe in both

hemispheres [peak voxel at MNI co-ordinates (�10 �78 42), BA

7, cluster extent: 1526 voxels, FWE-corrected cluster-level

p < .001]. At a more lenient cluster-level threshold (p < .05

uncorrected at the cluster level) coding of relevant object in-

formationwas found in and around our MD ROIs in the left IFS

[(�40 22 28), BA 44, cluster extent: 155, cluster-level p ¼ .021],

right IFS [(52 16 18), BA 44, cluster extent: 143, cluster-level

p ¼ .026], and at the boundary of the left IFA and AI/FO ROIs

[(�32 28 8), BA 47, cluster extent: 169, cluster-level p ¼ .017].

Three additional clusters were found in the cerebellum; [(�4

�80 �18), cluster extent: 223, cluster-level p ¼ .007; (�36 �64

�30), cluster extent: 167, cluster-level p ¼ .017; and (28e74

�22), cluster extent: 135, cluster-level p ¼ .029]. A similar

exploratory searchlight for irrelevant information coding

revealed no significant clusters at either threshold.

For each voxel in the brain, we also performed a paired t-

test to test for regions where relevant information was coded

more strongly than irrelevant information. Again, one cluster

survived FWE correction at the cluster-level (with a voxelwise

threshold of p < .001) in the precuneus [(17e70 38), BA 7,

cluster extent: 447, FWE-corrected cluster-level q < .001]. At an

uncorrected threshold, clusters were found again in the MD

system: IFS [(�28 40 16), BA 44, cluster extent: 166, cluster-level

p ¼ .015]; and two clusters in the ACC/pre-SMA [(6 20 50), BA

32, cluster extent: 144, cluster-level p ¼ .023; and (8 36 18), BA

32, cluster extent: 106, cluster-level p ¼ .045]. Additional re-

gions were the frontal pole [(12 58 14), BA 10, cluster extent:

110, cluster-level p ¼ .042] and the cerebellum [(�32 �66 �26),

cluster extent: 177, cluster-level p ¼ .013].

3.3. Coding of category placement

Given our paradigm, it was possible that as well as the cate-

gorisation decision at the level of the stimulus, participants

also held a category number in mind on each trial. Therefore,

we conducted an additional analysis in which the classifier

was trained on the data representing the category number

decisions in one task and tested on the category number
decisions participants made in the other task context. The

classifier did not successfully cross-classify category number

placement of the objects in the MD system [mean classifica-

tion accuracy 50.3%, t(25) ¼ 1.2, p ¼ .32]. We calculated the

Bayes Factor using a default uniform prior (Love et al., 2015) to

interpret this null effect (BF10 ¼ .5). This approaches the level

of .33 suggested by Jeffreys (1998) to represent strong evidence

for the null hypothesis. Consistent with our previouswork in a

similar paradigm (Jackson et al., 2017), the evidence suggests

that any MD activity patterns corresponding to category

number did not generalise between the two tasks. Thismay be

because the MD regions did not hold an abstract representa-

tion at the level of category number (e.g., “category 1” when it

refers to “long” is encoded differently from “category 1” when

it refers to “anti-clockwise”) or because our analysis did not

capture an abstract representation that did in fact occur (e.g.,

a brief response later in the trial). For our purposes, however,

this result suggests that any voxel re-use between codes in our

main analysis (below) is unlikely to be driven by abstract

representation of category number.

3.4. Voxel contribution to multiple neural codes

Our main analysis was an extension of multi-voxel pattern

analysis which examined the extent to which the same MD

voxels contributed to multiple codes for object information.

We ran permutation tests to compare the proportion of voxel

re-usewe observed to that expected by chance.We carried out

this analysis for all the ROIs that showed significant coding of

the stimulus information.

Overall the MD network displayed a higher proportion of

voxel re-use for the relevant dimensions than what would be

expected by chance (23.9%, p < .01), suggesting that MD coding

indeed reconfigures to solve different tasks. Considering these

regions separately, voxel re-use was also above chance in the

IPS (25.1%, p < .01) and IFS (27.9%, p < .05). Conversely, in BA 17

voxel re-use was not above chance for the relevant (p ¼ .24) or

the irrelevant information (p ¼ .57).

We also examined voxel re-use in the additional regions,

outside of the MD system, that the searchlight had found to

represent relevant information. The precuneus cluster that

survived FWE correction for coding of task-relevant informa-

tion did not display a significant level of voxel re-use (p ¼ .99).

However, voxel re-use was above chance (28.5%, p ¼ .002) in

one of the cerebellar clusters [(�4 �80 �18)]. There was no

evidence for above chance re-use in the other two cerebellar

clusters (both ps ¼ .99).

As a sanity check we tested whether voxel re-use was at

chancewhen information codingwas at chance, as in the case

of irrelevant information coding in the MD system. Indeed,

voxel re-use for irrelevant information was not different from

chance across the MD ROIs (all ps > .12). Voxel re-use was also

at chance in the LOC for relevant (p ¼ .72) and irrelevant in-

formation (p ¼ .85), and IT for relevant (p ¼ .72) and irrelevant

information (p ¼ .81). Moreover, voxel re-use was significantly

stronger for relevant relative to irrelevant information in the

MD system (main effect of relevancy [F(1,25) ¼ 4.52, p ¼ .04],

which did not interact with the factor region [F(3,78) ¼ 2.37,

p ¼ .07], in a repeated measures ANOVA with factors relevancy

and region.
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4. Discussion

The MD network has been proposed to code information

‘adaptively’ (Duncan, 2010, 2013). Themechanism is described

in terms of the responses of single neurons (Duncan, 2001),

but previous work in humans has focused mainly on the

response of whole brain regions (e.g., Jackson et al., 2017). To

explore this mechanism in more detail we developed a

method to measure the extent to which the same voxels in

these regions contributed to coding of information across two

distinct sets of objects and compared this to chance derived

from permutation tests. We found that single MD voxels

contributed to multiple codes for relevant object information,

while voxels in the early visual cortex did not. Consistent with

reports of single neuron flexibility in frontoparietal cortex of

NHPs (e.g., Cromer et al., 2010), this finding emphasises the

flexible response of the human MD regions.

The novel method in this study was developed to bridge

the gap between region-level results in humans (e.g., Jackson

et al., 2017) and detailed analysis at the single-unit level (e.g.,

Cromer et al., 2010). Our method allowed us to check whether

individual voxels contributed signal to multiple neural codes.

It is important to consider however, that voxel re-use is of

course an indirect measure of the extent to which individual

neurons are re-used. Even at this intermediate level of resolu-

tion it is possible that the key voxels which were re-used be-

tween codes happened to sample two independent

populations of neurons each responding to the two different

tasks. Ideally, to answer a question about whether neural re-

sources are re-used across multiple tasks, we would exploit

responses at the neural-level rather than the voxel-level. As

this is not possible in these data, we draw conclusions only at

a voxel level. However, it seems unlikely that such an expla-

nation could completely account for these results, because the

key independent neural populations (coding for the arbitrary

categorisations) would have to happen to concentrate within

single voxels more frequently than they are distributed across

voxels, and this would have to be consistent across the MD

regions and participants.

NHP studies have shown that higher cortical neurons

adapt their tuning profiles to respond to information that is

currently relevant (e.g., Freedman, 2001). In our previous work

(Jackson et al., 2017) we showed that the human MD regions

adjust their representations of single objects to emphasise

task-relevant category distinctions, resulting in preferential

coding of attended stimulus features. Herewe show that these

regions code the task-relevant category distinctions across

distinct groups of objects, and, replicating our previous work,

that coding of the attended features is stronger than coding of

the irrelevant stimulus features. This stands in contrast to BA

17, which coded both relevant and irrelevant visual features,

with no modulation by behavioural relevance. Consistent

with the proposal that cognitive flexibility underlies MD

involvement in a wide range of tasks (Cole & Schneider, 2007;

Duncan & Owen, 2000; Duncan, 2010), these data emphasise

that this system prioritises processing of the currently rele-

vant features of a stimulus.

In our searchlight analysis, one additional region, centred

on the precuneus, showed preferential coding of task-relevant
information. Interestingly, this region, which is typically

considered a major component of the default mode network

(e.g., Cavanna, 2007; Fransson & Marrelec, 2008) and in turn

associated with the task-negative or resting state (e.g., Fox

et al., 2005; Raichle et al., 2001; Shulman et al., 1997), has

recently been reported to hold representations relevant to

active tasks (Crittenden, Mitchell, & Duncan, 2015; Woolgar,

Afshar, et al., 2015). Here we found that the precuneus rep-

resented task-relevant object category information, which,

similar to MD cortex, was stronger than its representation of

irrelevant information. However, in the precuneus, unlike MD

cortex, there was no evidence for flexible re-use of the neural

resources of the precuneus (voxel re-use at chance) to achieve

this representation.

How specific is voxel re-use to the MD system? Note that

since re-use values will necessarily depend on the local

vasculature and signal strength, they are only interpretable

relative to the permutation test in the same region, so we did

not perform direct comparisons of re-use values between

ROIs. Therefore, our conclusion is limited to observing that re-

usewas above chance for theMD systemand not for others. Of

our a priori ROIs that coded object category, re-use was above

chance in theMD system and not in BA17. Our other ROIs (LOC

and IT) did not show coding of category, despite previous re-

ports of categorical information in these regionswith different

stimuli and paradigms (e.g., Kriegeskorte et al., 2008; Mur

et al., 2013). They therefore could not be expected to show

re-use. However, our exploratory searchlight analysis

revealed further regions that coded for task-relevant infor-

mation: the precuneus and, at an uncorrected threshold, three

clusters in the cerebellum. Of these, voxel re-use was above

chance only in one of the cerebellar clusters. This suggests a

degree of specificity, but also demonstrates that the MD sys-

tem is not the only system in which voxels may be re-used.

The cerebellar result may reflect the substantial cerebellar

projections from the lateral prefrontal cortex (e.g., Ramnani

et al., 2005) and its increasingly recognised role in executive

functions (Bellebaum & Daum, 2007).

In this paperwe refer to the extent towhichmultiplemulti-

voxel patterns load heavily on the same sets of voxels as

“voxel re-use”. In the NHP literature, the re-use of single

neurons across multiple tasks has been called “multitasking”

(Cromer et al., 2010), but we avoid this term to avoid confusion

with the term multitasking in the human cognitive literature.

Similar neural properties have also been described using the

term “mixed selectivity” (Fusi, Miller, & Rigotti, 2016; Rigotti

et al., 2013) whereby certain neural populations simulta-

neously reflect different task parameters. The emphasis in our

work is slightly different in that we have examined the extent

to which neural resources contribute to the representation of

the same type of information (object information) in distinct

categorisation tasks performed at different times. However,

the concept of re-use could certainly also incorporate using

the same resources in codes for different types of information.

As far as we are aware, this work constitutes the first to

attempt to quantify voxel re-use in human data and accord-

ingly it is difficult to predict what order of re-use values to

expect. Average MD re-use amongst the top 10% of voxels was

23.9%. This is perhaps comparable to the NHP literature in

which Roy et al. (2010) demonstrated that 24% of prefrontal
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neurons displayed this form of flexibility. However that group

also reported an instance where a significantly higher pro-

portion, 44% of prefrontal neurons, were re-used to code the

relevant distinctions of two different tasks (Cromer et al.,

2010). The authors suggested that the different extent of re-

use between the studies depended on how physically

different the two stimulus sets were: neural re-use was lower

when stimuli were more similar to each other (and therefore,

the task was more difficult). It would be interesting in the

future to use the methods developed here to examine the

extent to which voxel re-use varies with stimulus similarity

and task demands.

Successful behaviour requires an adaptive cognitive sys-

tem that can process information flexibly and efficiently. Our

data suggests that the MD network demonstrates this type of

flexibility, emphasising task-relevant features of different

objects and flexibly re-using its resources to do so, providing a

potential neural substrate for flexible behaviour. Future in-

vestigations can utilise the methods we describe here to

consider the contribution of individual voxels alongsidewhole

brain regions.
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