43,878 research outputs found
First-order quantum correction to the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field
First-order quantum correction to the Larmor radiation is investigated on the
basis of the scalar QED on a homogeneous background of time-dependent electric
field, which is a generalization of a recent work by Higuchi and Walker so as
to be extended for an accelerated charged particle in a relativistic motion. We
obtain a simple approximate formula for the quantum correction in the limit of
the relativistic motion when the direction of the particle motion is parallel
to that of the electric field.Comment: 12 pages, 2 figures, accepted for publication in Physical Review
Interactions of Cosmic Superstrings
We develop methods by which cosmic superstring interactions can be studied in
detail. These include the reconnection probability and emission of radiation
such as gravitons or small string loops. Loop corrections to these are
discussed, as well as relationships to -strings. These tools should
allow a phenomenological study of string models in anticipation of upcoming
experiments sensitive to cosmic string radiation.Comment: 22 pages, 6 figures; v2: updated reference
The electromagnetic self-force on a charged spherical body slowly undergoing a small, temporary displacement from a position of rest
The self-force of classical electrodynamics on a charged "rigid" body of
radius R is evaluated analytically for the body undergoing a slow (i.e., with a
speed v<<c), slight (i.e., small compared to R), and temporary displacement
from an initial position of rest. The results are relevant to the
Bohr-Rosenfeld analysis of the measurability of the electromagnetic field,
which has been the subject of a recent controversy.Comment: REVTeX, 15 pages, 3 figures, accepted by J. Phys.
NICMOS and VLBA observations of the gravitational lens system B1933+503
NICMOS observations of the complex gravitational lens system B1933+503 reveal
infrared counterparts to two of the inverted spectrum radio images. The
infrared images have arc-like structures. The corresponding radio images are
also detected in a VLBA map made at 1.7 GHz with a resolution of 6 mas. We fail
to detect two of the four inverted radio spectrum components with the VLBA even
though they are clearly visible in a MERLIN map at the same frequency at a
different epoch. The absence of these two components could be due to rapid
variability on a time-scale less than the time delay, or to broadening of the
images during propagation of the radio waves through the ISM of the lensing
galaxy to an extent that they fall below the surface brightness detectability
threshold of the VLBA observations. The failure to detect the same two images
with NICMOS is probably due to extinction in the ISM of the lensing galaxy.Comment: 5 pages, 4 figures, submitted to MNRA
Measuring gravitational lens time delays using low-resolution radio monitoring observations
Obtaining lensing time delay measurements requires long-term monitoring
campaigns with a high enough resolution (< 1 arcsec) to separate the multiple
images. In the radio, a limited number of high-resolution interferometer arrays
make these observations difficult to schedule. To overcome this problem, we
propose a technique for measuring gravitational time delays which relies on
monitoring the total flux density with low-resolution but high-sensitivity
radio telescopes to follow the variation of the brighter image. This is then
used to trigger high-resolution observations in optimal numbers which then
reveal the variation in the fainter image. We present simulations to assess the
efficiency of this method together with a pilot project observing radio lens
systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very
Large Array (VLA) observations. This new method is promising for measuring time
delays because it uses relatively small amounts of time on high-resolution
telescopes. This will be important because instruments that have high
sensitivity but limited resolution, together with an optimum usage of followup
high-resolution observations from appropriate radio telescopes may in the
future be useful for gravitational lensing time delay measurements by means of
this new method.Comment: 10 pages, 7 figures, accepted by MNRA
Bessel beam propagation: Energy localization and velocity
The propagation of a Bessel beam (or Bessel-X wave) is analyzed on the basis
of a vectorial treatment. The electric and magnetic fields are obtained by
considering a realistic situation able to generate that kind of scalar field.
Specifically, we analyze the field due to a ring-shaped aperture over a
metallic screen on which a linearly polarized plane wave impinges. On this
basis, and in the far field approximation, we can obtain information about the
propagation of energy flux and the velocity of the energy.Comment: 6 pages, 4 figure
Some Hamiltonian Models of Friction
Mathematical results on some models describing the motion of a tracer
particle through a Bose-Einstein condensate are described. In the limit of a
very dense, very weakly interacting Bose gas and for a very large particle
mass, the dynamics of the coupled system is determined by classical non-linear
Hamiltonian equations of motion. The particle's motion exhibits deceleration
corresponding to friction (with memory) caused by the emission of Cerenkov
radiation of gapless modes into the gas.
Precise results are stated and outlines of proofs are presented. Some
technical details are deferred to forthcoming papers.Comment: 19 Pages, 1 figur
Adjusting the tasseled cap brightness and greenness factors for atmospheric path radiance and absorption on a pixel by pixel basis
A radiative transfer model was used to convert ground measured reflectances into the radiance at the top of the atmosphere, for several levels of atmospheric path radiance. The radiance in MSS7 (0.8 to 1.1 m) was multiplied by the transmission fraction for atmospheres having different levels of precipitable water. The radiance values were converted to simulated LANDSAT digital counts for four path radiance levels and four levels of precipitable water. These values were used to calculate the Kauth-Thomas brightness, greenness, yellowness, and nonsuch factors. Brightness was affected by surface conditions and path radiance. Greenness was affected by surface conditions, path radiance, and precipitable water. Yellowness was affected by path radiance and nonsuch by precipitable water, and both factors changed only slightly with surface conditions. Yellowness and nonsuch were used to adjust brightness and greenness to produce factors that were affected only by surface conditions such as soils and vegetation, and not by path radiance and precipitable water
A Descriptive Study of the Population Dynamics of Adult \u3ci\u3eDiabrotica Virgifera Virgifera\u3c/i\u3e (Coleoptera: Chrysomelidae) in Artificially Infested Corn Fields
The influence of corn plant phenology on the dynamics of adult western corn rootworm, Diabrotica virgifera virgifera, populations was studied during 1988 and 1989 in com fields artificially infested with eggs. Fifty percent of adult emergence from the soil occurred by day 194 in 1988 and day 203 in 1989. In both years, adult emergence was synchronized with corn flowering, eggs were recovered in soil samples approximately four days after reproductive females were first observed in the population, and oviposition was essentially complete about 25 days after it began. The number of reproductive female beetle-days accumulating per m2 was similar in both years. Approximately two times as many eggs were laid in 1988 (1239 eggs 1m2) as in 1989 (590 eggs 1m2). The difference in egg density may have been caused by differences among years in the temporal synchrony of reproductive beetles with flowering corn. Daily survival rates of adults were high while corn was flowering; exhibited a gradual decline during grain filling; and decreased rapidly during the grain drying stage
- …