1,653 research outputs found

    Dust Devils and Dustless Vortices on a Desert Playa Observed with Surface Pressure and Solar Flux Logging

    Get PDF
    Dust devils are convective vortices rendered visible by lofted dust, and may be a significant means of injecting dust into the atmosphere, on both Earth and Mars. The fraction of vortices that are dust-laden is not well-understood, however. Here we report a May/June 2013 survey on a Nevada desert playa using small stations that record pressure and solar flux with high time resolution (2 Hz): these data allow detection of vortices and an estimate of the dust opacity of the subset of vortices that geometrically occult the sun. The encounter rate of vortex pressure drops of 0.3 hPa or larger is 50–80 per 100 days, with 0.6 hPa or larger drops occurring about 3 times less often. Obscuration events associated with pressure drops occur less frequently, in part because near-misses must be in the sunward direction to cause attenuation of the solar beam and in part because some vortices are not dust-laden. 40% of vortex events had no detectable attenuation, and only 20% of events caused dimming greater than about 2% (a maximum of ∼35%), with stronger dimming tending to occur with larger pressure drops. The distribution suggests dust lifting may be dominated by a few intense devils, complicating estimation of the total flux into the atmosphere

    A Timelapse Camera Dataset and Markov Model of Dust Devil Activity at Eldorado Playa, Nevada, USA

    Get PDF
    We report a May-June 2015 survey of dust devil activity on a Nevada desert playa using an inexpensive digital timelapse camera. We discuss techniques for exploiting the large volume of data (∼32,700 images, made publicly-available) generated in these observations, similar to imaging from Mars landers and rovers, noting the diurnal image filesize variations as a useful quick-look metric of weather conditions. We present results from a semi-automated image classification: this classification is available to other workers, for example for benchmarking automated procedures. The acquisition of images at 1/min for some 36 days permits study of the diurnal variation of dust devil activity (e.g. 85% of the dust devil images [i.e. those images manually classified as showing dust devils] occur between 12:00 and 17:00; during the period of peak activity 13:00–15:00 about 7% of images contain well-defined dust devils of several meters diameter or larger). The data also permit the dependence of dust devil characteristics on ambient conditions. We construct a simple two-state Markov model for the occurrence and persistence of dust devils (a few per cent chance that new dust devil activity appears in the next image; and a ∼45% chance that activity stops) which may help inform strategies for acquiring and interpreting field observations

    Tides and the Evolution of Planetary Habitability

    Full text link
    Tides raised on a planet by its host star's gravity can reduce a planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close-in and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars (<0.35 M_Sun). Such migration may have important implications for the evolution of the atmosphere, internal heating and the Gaia hypothesis. Similarly, a planet detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently-discovered, ~5 M_Earth planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when we include constraints derived from the additional companions, we see that most parameter choices that predict past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.Comment: 31 pages, 10 figures, accepted to Astrobiology. A version with full resolution figures is available at http://www.lpl.arizona.edu/~rory/publications/brjg07.pd

    Low-noise 0.8-0.96- and 0.96-1.12-THz superconductor-insulator-superconductor mixers for the Herschel Space Observatory

    Get PDF
    Heterodyne mixers incorporating Nb SIS junctions and NbTiN-SiO/sub 2/-Al microstrip tuning circuits offer the lowest reported receiver noise temperatures to date in the 0.8-0.96- and 0.96-1.12-THz frequency bands. In particular, improvements in the quality of the NbTiN ground plane of the SIS devices' on-chip microstrip tuning circuits have yielded significant improvements in the sensitivity of the 0.96-1.12-THz mixers relative to previously presented results. Additionally, an optimized RF design incorporating a reduced-height waveguide and suspended stripline RF choke filter offers significantly larger operating bandwidths than were obtained with mixers that incorporated full-height waveguides near 1 THz. Finally, the impact of junction current density and quality on the performance of the 0.8-0.96-THz mixers is discussed and compared with measured mixer sensitivities, as are the relative sensitivities of the 0.8-0.96- and 0.96-1.12-THz mixers

    Dust Devils on Titan

    Get PDF
    Conditions on Saturn\u27s moon Titan suggest that dust devils, which are convective, dust‐laden plumes, may be active. Although the exact nature of dust on Titan is unclear, previous observations confirm an active aeolian cycle, and dust devils may play an important role in Titan\u27s aeolian cycle, possibly contributing to regional transport of dust and even production of sand grains. The Dragonfly mission to Titan will document dust devil and convective vortex activity and thereby provide a new window into these features, and our analysis shows that associated winds are likely to be modest and pose no hazard to the mission

    Cooperative Charging in a Nanocrystal Assembly Gated By Ionic Liquid

    Full text link
    In order to make a densely packed assembly of undoped semiconductor nanocrystals conductive, it is usually gated by a room temperature ionic liquid. The ionic liquid enters the pores of the super-crystal assembly under the influence of an applied voltage. We study the capacitance of such a device as a function of the gate voltage. We show that, counter-intuitively, the capacitance of the system is the sum of delta-functions located at a sequence of critical gate voltages. At each critical voltage every nanocrystal acquires one additional electron.Comment: 9 pages, 4 figure

    Teaching Foundational Aquatic Skills to Children in Open Water Environments

    Get PDF
    Learning to swim in a swimming pool might not prepare water competence sufficiently for different aquatic environments. The aim of this study was to assess the effectiveness of teaching children water safety knowledge and skills in open water environments (i.e., harbor, river, and surf). The aquatic knowledge and skills of 98 children (7-11 years old) were tested in a swimming pool before, immediately after, and three months after receiving a three-day intensive education program. At pre-test, typically fewer than 50% of children achieved a high level of water safety competence. After the program, competency in each of the six tasks assessed had increased with up to 80% of participants completing the tasks unassisted. Three-month retention of these skills was generally high (i.e., competency levels were either maintained or improved). A key challenge for future research will be to untangle the influences of maturation, order effects, and the open water education

    The Octarepeat Domain of the Prion Protein Binds Cu(II) with Three Distinct Coordination Modes at pH 7.4

    Get PDF
    The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain. This unusual domain is comprised of four or more tandem repeats of the fundamental sequence PHGGGWGQ. Previous work from our laboratories demonstrates that at full copper occupancy, each HGGGW segment binds a single Cu2+. However, several recent studies suggest that low copper occupancy favors different coordination modes, possibly involving imidazoles from histidines in adjacent octapeptide segments. This is investigated here using a combination of X-band EPR, S-band EPR, and ESEEM, along with a library of modified peptides designed to favor different coordination interactions. At pH 7.4, three distinct coordination modes are identified. Each mode is fully characterized to reveal a series of copper-dependent octarepeat domain structures. Multiple His coordination is clearly identified at low copper stoichiometry. In addition, EPR detected copper−copper interactions at full occupancy suggest that the octarepeat domain partially collapses, perhaps stabilizing this specific binding mode and facilitating cooperative copper uptake. This work provides the first complete characterization of all dominant copper coordination modes at pH 7.4
    corecore