3,388 research outputs found

    Bryophytes and their distribution in the Blue Mountains region of New South Wales

    Get PDF
    The bryophytes (mosses, liverworts and hornworts) that occur in the Blue Mountains region of New South Wales (latitude 33˚–34˚ S, longitude 151˚–151˚40’ E) are listed and information is provided on their distribution in the region. Species lists are based on herbarium specimens and field collections. 348 bryophyte taxa have been recorded from 70 families, including 225 moss taxa (in 108 genera from 45 families), 120 liverwort taxa (in 51 genera from 24 families) and 3 hornwort taxa (in 3 genera from one family). The moss families with most taxa are the Pottiaceae (with 23 taxa in 13 genera), Bryaceae (with 15 taxa in 3 genera) and Fissidentaceae (with 13 taxa). The largest genera are Fissidens (13 taxa), Campylopus (9) and Macromitrium (8). The liverwort family with the most taxa is Lepidoziaceae, with 29 taxa in 10 genera. The largest liverwort genera are Frullania (11 taxa) and Riccardia (8). The species lists include collections from both bushland and urban areas. Natural features of the Blue Mountains, including topography, altitude, climate and vegetation appear to be important factors influencing the number of bryophyte species recorded from each location. The number of collections from particular locations has been considerably influenced by ease of access, particularly proximity to roads, public transport and railway stations. The species lists include many records from areas that were not accessible to the early collectors of the late 19th and early 20th centuries such as Wollemi National Park, Gardens of Stone National Park, Newnes Plateau and Kanangra-Boyd National Park

    An injection and mixing element for delivery and monitoring of inhaled nitric oxide

    Get PDF
    Background Inhaled nitric oxide (NO) is a selective pulmonary vasodilator used primarily in the critical care setting for patients concurrently supported by invasive or noninvasive positive pressure ventilation. NO delivery devices interface with ventilator breathing circuits to inject NO in proportion with the flow of air/oxygen through the circuit, in order to maintain a constant, target concentration of inhaled NO. Methods In the present article, a NO injection and mixing element is presented. The device borrows from the design of static elements to promote rapid mixing of injected NO-containing gas with breathing circuit gases. Bench experiments are reported to demonstrate the improved mixing afforded by the injection and mixing element, as compared with conventional breathing circuit adapters, for NO injection into breathing circuits. Computational fluid dynamics simulations are also presented to illustrate mixing patterns and nitrogen dioxide production within the element. Results Over the range of air flow rates and target NO concentrations investigated, mixing length, defined as the downstream distance required for NO concentration to reach within ±5 % of the target concentration, was as high as 47 cm for the conventional breathing circuit adapters, but did not exceed 7.8 cm for the injection and mixing element. Conclusion The injection and mixing element has potential to improve ease of use, compatibility and safety of inhaled NO administration with mechanical ventilators and gas delivery devices

    The Roll of the Burgh Courts of Aberdeen, August-October 1317

    Get PDF
    Publisher PD

    A seamlessly coupled GIS and distributed groundwater flow model

    Get PDF
    Abstract There are three approaches for coupling groundwater models with GISs, i.e. loose, tight, and seamless. In seamless coupling a model code is written into, and run from within, a GIS. We implemented {BGS} {GISGroundwater} in a {GIS} in this way for the first time. It facilitates the construction and simulation of the model, and the visualisation of the results all within the {GIS} environment. The model consists of a 2D finite-difference groundwater flow model and a simple user-interface. It can represent heterogeneous aquifers, variably confined and unconfined conditions, and distributed groundwater recharge and abstraction. It offers benefits in terms of ease of use and in streamlining the model construction and application process. {BGS} {GISGroundwater} has been validated against analytical solutions to groundwater-head profiles for a range of aquifer configurations. This model lowers barriers to entry to groundwater flow modelling for a wider group of environmental scientists

    Variability in uptake efficiency for pulsed versus constant concentration delivery of inhaled nitric oxide

    Get PDF
    BACKGROUND: Nitric oxide (NO) is currently administered using devices that maintain constant inspired NO concentrations. Alternatively, devices that deliver a pulse of NO during the early phase of inspiration may have use in optimizing NO dosing efficiency and in extending application of NO to long-term use by ambulatory, spontaneously breathing patients. The extent to which the amount of NO delivered for a given pulse sequence determines alveolar concentrations and uptake, and the extent to which this relationship varies with breathing pattern, physiological, and pathophysiological parameters, warrants investigation. METHODS: A mathematical model was used to analyze inhaled nitric oxide (NO) transport through the conducting airways, and to predict uptake from the alveolar region of the lung. Pulsed delivery was compared with delivery of a constant concentration of NO in the inhaled gas. RESULTS: Pulsed delivery was predicted to offer significant improvement in uptake efficiency compared with constant concentration delivery. Uptake from the alveolar region depended on pulse timing, tidal volume, respiratory rate, lung and dead space volume, and the diffusing capacity of the lung for NO (D(L)NO). It was predicted that variation in uptake efficiency with breathing pattern can be limited using a pulse time of less than 100 ms, with a delay of less than 50 ms between the onset of inhalation and pulse delivery. Nonlinear variation in uptake efficiency with D(L)NO was predicted, with uptake efficiency falling off sharply as D(L)NO decreased below ~50-60 ml/min/mm Hg. Gas mixing in the conducting airways played an important role in determining uptake, such that consideration of bulk convection alone would lead to errors in assessing efficiency of pulsed delivery systems. CONCLUSIONS: Pulsed NO delivery improves uptake efficiency compared with constant concentration delivery. Optimization of pulse timing is critical in limiting intra- and inter-subject variability in dosing

    Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next-generation sequencing technologies have been applied most often to model organisms or species closely related to a model. However, these methods have the potential to be valuable in many wild organisms, including those of conservation concern. We used Roche 454 pyrosequencing to characterize gene expression in polyploid lake sturgeon (<it>Acipenser fulvescens</it>) gonads.</p> <p>Results</p> <p>Titration runs on a Roche 454 GS-FLX produced more than 47,000 sequencing reads. These reads represented 20,741 unique sequences that passed quality control (mean length = 186 bp). These were assembled into 1,831 contigs (mean contig depth = 4.1 sequences). Over 4,000 sequencing reads (~19%) were assigned gene ontologies, mostly to protein, RNA, and ion binding. A total of 877 candidate SNPs were identified from > 50 different genes. We employed an analytical approach from theoretical ecology (rarefaction) to evaluate depth of sequencing coverage relative to gene discovery. We also considered the relative merits of normalized versus native cDNA libraries when using next-generation sequencing platforms. Not surprisingly, fewer genes from the normalized libraries were rRNA subunits. Rarefaction suggests that normalization has little influence on the efficiency of gene discovery, at least when working with thousands of reads from a single tissue type.</p> <p>Conclusion</p> <p>Our data indicate that titration runs on 454 sequencers can characterize thousands of expressed sequence tags which can be used to identify SNPs, gene ontologies, and levels of gene expression in species of conservation concern. We anticipate that rarefaction will be useful in evaluations of gene discovery and that next-generation sequencing technologies hold great potential for the study of other non-model organisms.</p
    corecore