203 research outputs found

    High resolution measurements of the switching current in a Josephson tunnel junction: Thermal activation and macroscopic quantum tunneling

    Full text link
    We have developed a scheme for a high resolution measurement of the switching current distribution of a current biased Josephson tunnel junction using a timing technique. The measurement setup is implemented such that the digital control and read-out electronics are optically decoupled from the analog bias electronics attached to the sample. We have successfully used this technique to measure the thermal activation and the macroscopic quantum tunneling of the phase in a small Josephson tunnel junction with a high experimental resolution. This technique may be employed to characterize current-biased Josephson tunnel junctions for applications in quantum information processing.Comment: 10 pages, 8 figures, 1 tabl

    Thermal effects on atomic friction

    Full text link
    We model friction acting on the tip of an atomic force microscope as it is dragged across a surface at non-zero temperatures. We find that stick-slip motion occurs and that the average frictional force follows lnv2/3|\ln v|^{2/3}, where vv is the tip velocity. This compares well to recent experimental work (Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all microscopic parameters. We calculate the scaled form of the average frictional force's dependence on both temperature and tip speed as well as the form of the friction-force distribution function.Comment: Accepted for publication, Physical Review Letter

    Metastability in Josephson transmission lines

    Full text link
    Thermal activation and macroscopic quantum tunneling in current-biased discrete Josephson transmission lines are studied theoretically. The degrees of freedom under consideration are the phases across the junctions which are coupled to each other via the inductances of the system. The resistively shunted junctions that we investigate constitute a system of N interacting degrees of freedom with an overdamped dynamics. We calculate the decay rate within exponential accuracy as a function of temperature and current. Slightly below the critical current, the decay from the metastable state occurs via a unique ("rigid") saddlepoint solution of the Euclidean action describing the simultaneous decay of the phases in all the junctions. When the current is reduced, a crossover to a regime takes place, where the decay occurs via an "elastic" saddlepoint solution and the phases across the junctions leave the metastable state one after another. This leads to an increased decay rate compared with the rigid case both in the thermal and the quantum regime. The rigid-to-elastic crossover can be sharp or smooth analogous to first- or second- order phase transitions, respectively. The various regimes are summarized in a current-temperature decay diagram.Comment: 11 pages, RevTeX, 3 PS-figures, revised versio

    Crossover from thermal hopping to quantum tunneling in Mn_{12}Ac

    Full text link
    The crossover from thermal hopping to quantum tunneling is studied. We show that the decay rate Γ\Gamma with dissipation can accurately be determined near the crossover temperature. Besides considering the Wentzel-Kramers-Brillouin (WKB) exponent, we also calculate contribution of the fluctuation modes around the saddle point and give an extended account of a previous study of crossover region. We deal with two dangerous fluctuation modes whose contribution can't be calculated by the steepest descent method and show that higher order couplings between the two dangerous modes need to be taken into considerations. At last the crossover from thermal hopping to quantum tunneling in the molecular magnet Mn_{12}Ac is studied.Comment: 10 pages, 3 figure

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    Sonoluminescence as a QED vacuum effect. I: The Physical Scenario

    Get PDF
    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of changes in the properties of the quantum-electrodynamic (QED) vacuum state. This mechanism is most often phrased in terms of changes in the Casimir Energy: changes in the distribution of zero-point energies and has recently been the subject of considerable controversy. The present paper further develops this quantum-vacuum approach to sonoluminescence: We calculate Bogolubov coefficients relating the QED vacuum states in the presence of a homogeneous medium of changing dielectric constant. In this way we derive an estimate for the spectrum, number of photons, and total energy emitted. We emphasize the importance of rapid spatio-temporal changes in refractive indices, and the delicate sensitivity of the emitted radiation to the precise dependence of the refractive index as a function of wavenumber, pressure, temperature, and noble gas admixture. Although the physics of the dynamical Casimir effect is a universal phenomenon of QED, specific experimental features are encoded in the condensed matter physics controlling the details of the refractive index. This calculation places rather tight constraints on the possibility of using the dynamical Casimir effect as an explanation for sonoluminescence, and we are hopeful that this scenario will soon be amenable to direct experimental probes. In a companion paper we discuss the technical complications due to finite-size effects, but for reasons of clarity in this paper we confine attention to bulk effects.Comment: 25 pages, LaTeX 209, ReV-TeX 3.2, eight figures. Minor revisions: Typos fixed, references updated, minor changes in numerical estimates, minor changes in some figure

    Pioneer Anomaly and the Kuiper Belt mass distribution

    Full text link
    Pioneer 10 and 11 were the first probes sent to study the outer planets of the Solar System and Pioneer 10 was the first spacecraft to leave the Solar System. Besides their already epic journeys, Pioneer 10 and 11 spacecraft were subjected to an unaccounted effect interpreted as a constant acceleration toward the Sun, the so-called Pioneer anomaly. One of the possibilities put forward for explaining the Pioneer anomaly is the gravitational acceleration of the Kuiper Belt. In this work we examine this hypothesis for various models for the Kuiper Belt mass distribution. We find that the gravitational effect due to the Kuiper Belt cannot account for the Pioneer anomaly. Furthermore, we have also studied the hypothesis that drag forces can explain the the Pioneer anomaly; however we conclude that the density required for producing the Pioneer anomaly is many orders of magnitude greater than those of interplanetary and interstellar dust. Our conclusions suggest that only through a mission, the Pioneer anomaly can be confirmed and further investigated. If a mission with these aims is ever sent to space, it turns out, on account of our results, that it will be also a quite interesting probe to study the mass distribution of the Kuiper Belt.Comment: Plain latex; 17 pages, 12 figures. Version to appear in Classical and Quantum Gravity (2006

    Analysis of Bonding between Conjugated Organic Molecules and Noble Metal Surfaces Using Orbital Overlap Populations

    Get PDF
    The electronic structure of metal−organic interfaces is of paramount importance for the properties of organic electronic and single-molecule devices. Here, we use so-called orbital overlap populations derived from slab-type band-structure calculations to analyze the covalent contribution to the bonding between an adsorbate layer and a metal. Using two prototypical molecules, the strong acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) on Ag(111) and the strong donor 1H,1′H-[4,4′]bipyridinylidene (HV0) on Au(111), we present overlap populations as particularly versatile tools for describing the metal−organic interaction. Going beyond traditional approaches, in which overlap populations are represented in an atomic orbital basis, we also explore the use of a molecular orbital basis to gain significant additional insight. On the basis of the derived quantities, it is possible to identify the parts of the molecules responsible for the bonding and to analyze which of the molecular orbitals and metal bands most strongly contribute to the interaction and where on the energy scale they interact in bonding or antibonding fashion

    Cupricyclins, Novel Redox-Active Metallopeptides Based on Conotoxins Scaffold

    Get PDF
    Highly stable natural scaffolds which tolerate multiple amino acid substitutions represent the ideal starting point for the application of rational redesign strategies to develop new catalysts of potential biomedical and biotechnological interest. The knottins family of disulphide-constrained peptides display the desired characteristics, being highly stable and characterized by hypervariability of the inter-cysteine loops. The potential of knottins as scaffolds for the design of novel copper-based biocatalysts has been tested by engineering a metal binding site on two different variants of an ω-conotoxin, a neurotoxic peptide belonging to the knottins family. The binding site has been designed by computational modelling and the redesigned peptides have been synthesized and characterized by optical, fluorescence, electron spin resonance and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupricyclin-1 and -2, bind one Cu2+ ion per molecule with nanomolar affinity. Cupricyclins display redox activity and catalyze the dismutation of superoxide anions with an activity comparable to that of non-peptidic superoxide dismutase mimics. We thus propose knottins as a novel scaffold for the design of catalytically-active mini metalloproteins
    corecore