1,992 research outputs found

    Decoherence due to three-body loss and its effect on the state of a Bose-Einstein condensate

    Full text link
    A Born-Markov master equation is used to investigate the decoherence of the state of a macroscopically occupied mode of a cold atom trap due to three-body loss. In the large number limit only coherent states remain pure for times longer than the decoherence time: the time it takes for just three atoms to be lost from the trap. For large numbers of atoms (N>10^4) the decoherence time is found to be much faster than the phase collapse time caused by intra-trap atomic collisions

    Sediment Quality in Puget Sound Year 3 - Southern Puget Sound

    Get PDF
    As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacoma’s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three “sediment quality triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages

    Survey of sediment quality in Sabine Lake, Texas and vicinity

    Get PDF
    The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages

    The validity of the Landau-Zener model for output coupling of Bose condensates

    Full text link
    We investigate the validity of the Landau-Zener model in describing the output coupling of Bose condensates from magnetic traps by a chirped radiofrequency field. The predictions of the model are compared with the numerical solutions of the Gross-Pitaevskii equation. We find a dependence on the chirp direction, and also quantify the role of gravitation.Comment: 4 pages, Late

    In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC

    Get PDF
    A NASA DC‐8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC4 ) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO2 measurements. Elevated concentrations of SO2, sulfate aerosol, and particles were measured by DC‐8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ∼2 h at Huila to ∼22–48 h downwind of Ecuador. The plumes contained sulfate‐rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In‐plume O3 concentrations were ∼70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O3 depletion via reactive halogen chemistry. The TC4 data record rapid cloud processing of the Huila volcanic plume involving aqueous‐phase oxidation of SO2 by H2O2, but overall the data suggest average in‐plume SO2 to sulfate conversion rates of ∼1%–2% h−1 . SO2 column amounts measured in the Tungurahua plume (∼0.1–0.2 Dobson units) are commensurate with average SO2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacit

    Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability

    Full text link
    We show the existence of a region in the parameter space that defines the field dynamics in a Fabry-Perot cylindrical cavity, where three output stable stationary states of the light are possible for a given localized incident field. Two of these states do not preserve the bilateral (i.e. left-right) symmetry of the entire system. These broken-symmetry states are the high-transmission nonlinear modes of the system. We also discuss how to excite these states.Comment: 5 pages, 5 figure

    Quasi-continuous atom laser in the presence of gravity

    Get PDF
    We analyse the extraction of a coherent atomic beam from a trapped Bose-Einstein condensate using a rf transition to a non-trapping state at T=0 K. Our quantum treatment fully takes gravity into account but neglects all interactions in the free falling beam. We obtain an analytical expression of the output rate and of the wave function of the extracted beam, i.e. the output mode of the ``atom laser''. Our model reproduces satisfactorily experimental data without any adjustable parameter.Comment: 4 pages, 2 figure

    Phase preparation by atom counting of Bose-Einstein condensates in mixed states

    Get PDF
    We study the build up of quantum coherence between two Bose-Einstein condensates which are initially in mixed states. We consider in detail the two cases where each condensate is initially in a thermal or a Poisson distribution of atom number. Although initially there is no relative phase between the condensates, a sequence of spatial atom detections produces an interference pattern with arbitrary but fixed relative phase. The visibility of this interference pattern is close to one for the Poisson distribution of two condensates with equal counting rates but it becomes a stochastic variable in the thermal case, where the visibility will vary from run to run around an average visibility of π/4.\pi /4. In both cases, the variance of the phase distribution is inversely proportional to the number of atom detections in the regime where this number is large compared to one but small compared with the total number of atoms in the condensates.Comment: 9 pages, 6 PostScript figure, submitted to PR

    The Josephson plasmon as a Bogoliubov quasiparticle

    Get PDF
    We study the Josephson effect in alkali atomic gases within the two-mode approximation and show that there is a correspondence between the Bogoliubov description and the harmonic limit of the phase representation. We demonstrate that the quanta of the Josephson plasmon can be identified with the Bogoliubov excitations of the two-site Bose fluid. We thus establish a mapping between the Bogoliubov approximation for the many-body theory and the linearized pendulum Hamiltonian.Comment: 9 pages, LaTeX, submitted to J. Phys.
    corecore