2 research outputs found

    Efficient, Chemoenzymatic Process for Manufacture of the Boceprevir Bicyclic [3.1.0]Proline Intermediate Based on Amine Oxidase-Catalyzed Desymmetrization

    No full text
    The key structural feature in Boceprevir, Merck’s new drug treatment for hepatitis C, is the bicyclic [3.1.0]­proline moiety “P2”. During the discovery and development stages, the P2 fragment was produced by a classical resolution approach. As the drug candidate advanced through clinical trials and approached regulatory approval and commercialization, Codexis and Schering–Plough (now Merck) jointly developed a chemoenzymatic asymmetric synthesis of P2 where the net reaction was an oxidative Strecker reaction. The key part of this reaction sequence is an enzymatic oxidative desymmetrization of the prochiral amine substrate

    Baeyer–Villiger Monooxygenase-Mediated Synthesis of Esomeprazole As an Alternative for Kagan Sulfoxidation

    No full text
    A wild-type Baeyer–Villiger monooxygenase was engineered to overcome numerous liabilities in order to mediate a commercial oxidation of pyrmetazole to esomeprazole, using air as the terminal oxidant in an almost exclusively aqueous reaction matrix. The developed enzyme and process compares favorably to the incumbent Kagan inspired chemocatalytic oxidation, as esomeprazole was isolated in 87% yield, in >99% purity, with an enantiomeric excess of >99%
    corecore