100 research outputs found

    A prolonged ICU stay after interhospital transport?

    Get PDF
    Transport of critically ill patients can be complicated [1-3]. Barratt and colleagues studied patients transferred for nonclinical reasons to evaluate the consequences of transportation [4]. Th ere was no diff erence in mortality but the ICU length of stay (LOS) increased by 3  days, which was explained as a negative impact of the transport on patient physiology. We disagree with this conclusion. First, by including only transports to level 3 ICUs the received level of care for transported patients will increase, introducing a bias. Second, the increase in LOS can be interpreted as a result of selection bias, because patients with a short expected LOS would often not be considered eligible for transport. Also, since there was no increase in mortality, which would have been expected with an increased LOS, we might be looking at a mortality reduction as a result of the transfer to a higher-level ICU. Th ird, Barrett and colleagues suggest that deterioration of patient physiology during transport is probably respon sible for the increase in LOS. However, the reported Intensive Care National Audit and Research Centre scores before and after transport (although not validated for sequential patient assessments) do not support this assumption. Fourth, the method of transportation should have been included in this study. Specialised transport teams deliver patients with a better acute physiology compared with nonspecialised teams [2,5], making a need for regaining physiological stability unlikely. In conclusion, we congratulate Barratt and colleagues for their research. However, we think their conclusion is premature because multiple possible confounders were not taken into account

    Inter-hospital transport of critically ill patients; expect surprises

    Get PDF
    INTRODUCTION: Inter-hospital transport of critically ill patients is increasing. When performed by specialized retrieval teams there are less adverse events compared to transport by ambulance. These transports are performed with technical equipment also used in an Intensive Care Unit (ICU). As a consequence technical problems may arise and have to be dealt with on the road. In this study, all technical problems encountered while transporting patients with our mobile intensive care unit service (MICU) were evaluated. METHODS: From March 2009 until August 2011 all transports were reviewed for technical problems. The cause, solution and, where relevant, its influence on protocol were stated. RESULTS: In this period of 30 months, 353 patients were transported. In total 55 technical problems were encountered. We provide examples of how they influenced transport and how they may be resolved. CONCLUSION: The use of technical equipment is part of intensive care medicine. Wherever this kind of equipment is used, technical problems will occur. During inter-hospital transports, without extra personnel or technical assistance, the transport team is dependent on its own ability to resolve these problems. Therefore, we emphasize the importance of having some technical understanding of the equipment used and the importance of training to anticipate, prevent and resolve technical problems. Being an outstanding intensivist on the ICU does not necessarily mean being qualified for transporting the critically ill as well. Although these are lessons derived from inter-hospital transport, they may also apply to intra-hospital transport

    Protocol of the sepsivit study:A prospective observational study to determine whether continuous heart rate variability measurement during the first 48 hours of hospitalisation provides an early warning for deterioration in patients presenting with infection or sepsis to the emergency department of a Dutch academic teaching hospital

    Get PDF
    INTRODUCTION: One in five patients with sepsis deteriorates within 48 hours after hospital admission. Regrettably, a clear tool for the early detection of deterioration is still lacking. The SepsiVit study aims to determine whether continuous heart rate variability (HRV) measurement can provide an early warning for deterioration in patients presenting with suspected infection or sepsis to the emergency department (ED). METHODS AND ANALYSIS: The protocol of a prospective observational study in the ED. We will include 171 adult medical patients presenting with suspected infection or sepsis and at least two systemic inflammatory response syndrome criteria. Patients with known pregnancy, cardiac transplantation or not admitted to our hospital are excluded.High sample frequency ECG signals (500 Hz), respiratory rate, blood pressure and peripheral oxygen saturation will be recorded continuously during the first 48 hours of hospitalisation using a bedside patient monitor (Philips IntelliVue MP70). Primary endpoint is patient deterioration, defined as the development of organ dysfunction, unplanned intensive care unit admission or in-hospital mortality. The ECG data will be used for offline HRV analysis. We will compare the HRV between two groups (deterioration/no deterioration) and analyse whether HRV provides an early warning for deterioration. Furthermore, we will create a multivariate predictive model for deterioration based on heart rate, respiratory rate and HRV. As planned secondary analyses, we (1) perform a subgroup analysis for patients with pneumosepsis and urosepsis and (2) determine whether HRV using lower sample frequencies (1 Hz or less) suffices to predict deterioration. ETHICS AND DISSEMINATION: The Institutional Review Board of the University Medical Center Groningen granted a waiver for the study (METc 2015/164). Results will be disseminated through international peer-reviewed publications and conference presentations. A lay summary of the results will be provided to the study participants. TRIAL REGISTRATION NUMBER: NTR6168; Pre-results

    Repeated vital sign measurements in the emergency department predict patient deterioration within 72 hours:A prospective observational study

    Get PDF
    BACKGROUND: More than one in five patients presenting to the emergency department (ED) with (suspected) infection or sepsis deteriorate within 72 h from admission. Surprisingly little is known about vital signs in relation to deterioration, especially in the ED. The aim of our study was to determine whether repeated vital sign measurements in the ED can differentiate between patients who will deteriorate within 72 h and patients who will not deteriorate. METHODS: We performed a prospective observational study in patients presenting with (suspected) infection or sepsis to the ED of our tertiary care teaching hospital. Vital signs (heart rate, mean arterial pressure (MAP), respiratory rate and body temperature) were measured in 30-min intervals during the first 3 h in the ED. Primary outcome was patient deterioration within 72 h from admission, defined as the development of acute kidney injury, liver failure, respiratory failure, intensive care unit admission or in-hospital mortality. We performed a logistic regression analysis using a base model including age, gender and comorbidities. Thereafter, we performed separate logistic regression analyses for each vital sign using the value at admission, the change over time and its variability. For each analysis, the odds ratios (OR) and area under the receiver operator curve (AUC) were calculated. RESULTS: In total 106 (29.5%) of the 359 patients deteriorated within 72 h from admission. Within this timeframe, 18.3% of the patients with infection and 32.9% of the patients with sepsis at ED presentation deteriorated. Associated with deterioration were: age (OR: 1.02), history of diabetes (OR: 1.90), heart rate (OR: 1.01), MAP (OR: 0.96) and respiratory rate (OR: 1.05) at admission, changes over time of MAP (OR: 1.04) and respiratory rate (OR: 1.44) as well as the variability of the MAP (OR: 1.06). Repeated measurements of heart rate and body temperature were not associated with deterioration. CONCLUSIONS: Repeated vital sign measurements in the ED are better at identifying patients at risk for deterioration within 72 h from admission than single vital sign measurements at ED admission

    Pain score, desire for pain treatment and effect on pain satisfaction in the emergency department:a prospective, observational study

    Get PDF
    Background: Pain management in the Emergency Department has often been described as inadequate, despite proven benefits of pain treatment protocols. The aim of this study was to investigate the effectiveness of our current pain protocol on pain score and patient satisfaction whilst taking the patients' wishes for analgesia into account. Methods: We conducted a 10-day prospective observational study in the Emergency Department. Demographics, pain characteristics, Numeric Rating Scale pain scores and the desire for analgesics were noted upon arrival at the Emergency Department. A second Numeric Rating Scale pain score and the level of patient satisfaction were noted 75-90 min after receiving analgesics. Student T-tests, Mann-Whitney U tests and Kruskall-Wallis tests were used to compare outcomes between patients desiring vs. not desiring analgesics or patients receiving vs. not receiving analgesics. Univariate and multivariate logistic regression models were used to investigate associations between potential predictors and outcomes. Results: In this study 334 patients in pain were enrolled, of which 43.7% desired analgesics. Initial pain score was the only significant predictive factor for desiring analgesia, and differed between patients desiring (7.01) and not desiring analgesics (5.14). Patients receiving analgesics (52.1%) had a greater decrease in pain score than patients who did not receive analgesics (2.41 vs. 0.94). Within the group that did not receive analgesics there was no difference in satisfaction score between patients desiring and not desiring analgesics (7.48 vs. 7.54). Patients receiving analgesics expressed a higher satisfaction score than patients not receiving analgesics (8.10 vs. 7.53). Conclusions: This study pointed out that more than half of the patients in pain entering the Emergency Department did not desire analgesics. In patients receiving analgesics, our pain protocol has shown to adequately treat pain, leading to a higher satisfaction for emergency health-care at discharge. This study emphasizes the importance of questioning pain score and desire for analgesics to prevent incorrect conclusions of inadequate pain management, as described in previous studies
    corecore