11 research outputs found

    Vacuolation of diverse cell types in homozygous <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> (A) Representative images are shown of Wright-Giemsa stained peripheral blood smears from <i>Cln3<sup>+/+</sup></i> and <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> littermate mice (scale bar = 10 µm). Note the presence of vacuoles in the cytoplasm of the dark blue stained peripheral blood lymphocyte. (B) Representative images are shown of H&E-stained sections of epididymis from 19-week-old <i>Cln3<sup>+/+</sup></i> and <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> littermate male mice (scale bar = 50 µm). A representative image of a section of mutant (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) epididymis immunostained for vacuolar ATPase (V-ATPase, green) and aquaporin-9 (AQP9, red), which highlight the apical (luminal) membrane of clear/narrow cells or principal cells, respectively (scale bar = 25 µm). (C) Representative TEM images of <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> epididymis cross-sections are shown. Note both the giant vacuoles and the multiple smaller vacuoles filling the cytoplasm of the clear cells. Also note the relative absence of electron-dense material inside the vacuoles. Scale bars, left panel = 10 µm; right panel = 2 µm. (D) Representative images of subunit c immunostained <i>Cln3<sup>+/+</sup></i> and <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> epididymis sections are shown. Asterisks (*) mark some of the large vacuoles. Scale bars = 50 µm. Blood smears and epididymides from at least 10 mice per genotype were analyzed in total, and abnormal vacuolation was observed in all of the <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> mice and in none of the wild-type or <i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup> mice.</p

    Metabolic abnormalities in <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> (A) Graphs depicting female (left) and male (right) mean body weight data from wild-type (diamonds), heterozygous (squares), and homozygous (triangles) <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice at ages between 11 and 20-weeks are shown (n = 5–10 mice per genotype/sex/age). No significant genotypic differences were observed. Error bars represent SEM. (B) Mean ± SEM rectal body temperatures are shown for male (black bars) and female (gray bars) wild-type (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>) and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) littermate mice are shown. Rectal body temperatures, which were measured at rest, were slightly elevated in male and female, heterozygous and homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice, compared to wild-type mice. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type). (C) Mean ± SEM values for minimum oxygen consumption (ml/hr) are shown for male (black bars) and female (gray bars) wild-type (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>) and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) littermate mice are shown. Minimum oxygen consumption was elevated in male and female heterozygous and homozygous <i>Cln3<sup>Δex7/8</sup></i> mice, compared to wild-type mice. 5–10 mice per group (genotype/sex) were analyzed. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type).</p

    Heart analysis of <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> (A) The bar graph depicts normalized heart weights for wild-type (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>), and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) littermate 19–20 week old mice. Normalized heart weights represent a ratio of heart weight (mg = milligrams)/body weight (g = grams). Normalized heart weights were slightly increased in heterozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice, and more so in homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice, compared to wild-type littermates. ANOVA analysis suggested a significant genotype effect (p<0.05). (B) Representative micrographs of hematoxylin and eosin (H&E) stained heart sections from wild-type (<i>Cln3<sup>+/+</sup></i>, n = 8) and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>, n = 10) littermate 19–20 week old mice are shown, which do not obviously differ from one another in their morphology. Scale bar = 100 µm. (C) Representative micrographs are shown of α-subunit c immunostained heart sections from 19-week old <i>Cln3<sup>+/+</sup></i> and <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> littermate mice. Note the abundance of subunit c-immunopositive deposits in the <i>Cln3<sup>?ex7/8/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup> section. Only sparse punctate subunit c immunostaining is present in the <i>Cln3<sup>+/+</sup></i> section. Scale bar = 200 µm. Inset scale bar = 25 µm.</p

    T cell frequencies in peripheral blood from <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice.

    No full text
    <p>The frequencies of T-cells [% T cells (CD45+)], the ratios of CD4+/CD8+ T cells, and the percentage of Ly6c+ cells among the CD8+ and CD4+ T cell populations, determined by flow cytometry, are shown for female and male wild-type (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>), and homozygous (<i>Cln3<sup>Δex7/8/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>) littermate mice. p values, determined in a two-tailed, unpaired Student’s t-test of the heterozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> values versus wild-type (<i>Cln3<sup>+/+</sup></i>) values, or homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> values versus wild-type (<i>Cln3<sup>+/+</sup></i>) values, are shown. Bold typeface highlights parameters that were significantly different versus wild-type controls. Samples from 9–10 mice per group (genotype/sex) were analyzed, as indicated.</p

    Electroretinography of 16-month-old <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> (A) Scotopic ERG traces are shown for 5-, 9-, and 16-month old wild-type (<i>Cln3<sup>+/+</sup></i>, black trace, n = 7) and homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>, red trace, n = 8) mice. The relative amplitudes of the a-wave do not dramatically differ between the wild-type and homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice. However, the b-wave is drastically reduced in aged homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice, compared to wild-type littermates. Thus, homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice exhibit an electronegative ERG at 16-months of age (b/a ratio = 1, versus b/a ratio = 2.4 in wild-type mice). (B) Photopic ERG traces, reflecting cone response, are shown for 5-, 9-, and 16-month-old wild-type (<i>Cln3<sup>+/+</sup></i>, black trace, n = 7) and homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>, red trace, n = 8) mice. There was a significant genotypic difference in the relative mean amplitudes already at 5 months of age.</p

    Subtle genotypic differences in performance of young adult <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice in sensory and motor neurological assays.</b> Shown are results of behavioural analyses in a vertical pole-climbing test (A), prepulse inhibition to the acoustic startle response (PPI) (B), acoustic startle response (C), and thermal nociception (D) for female (left) and male (right) littermate control (<i>Cln3<sup>+/+</sup></i>), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>) and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) mice (n = 9–10 mice per group). Data are presented as mean ± standard error of the mean (SEM). (A) Homozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> female mice had an increased latency to descend the pole, compared to female wild-type or heterozygous littermates. In a Kruskal-Wallis test, the genotype effect was p<0.01 (*) for females, with or without heterozygous <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice included in the analysis. (B) Mean %PPI to an acoustic startle, with four prepulse intensities (67, 69, 73, 81 decibels [db]), or with all prepulse intensities averaged (‘global’) are shown. *, ANOVA, p<0.05. (C) The mean ± SEM of the acoustic startle response to 70–120 db sounds is shown for littermate control (<i>Cln3<sup>+/+</sup></i>, circles), heterozygous (<i>Cln3<sup>+/</sup></i><sup><b>Δ</b><i>ex7/8</i></sup>, squares) and homozygous (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>, triangles) <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8</i></sup> mice. NS = no startle sound. For females, ANOVA, genotype effect was F<sub>(7,11)</sub> = 4.63, p<0.05, and post-hoc tests revealed that this was significant at 90 and 100 db (*p<0.05, ***<i>P</i><0.001). No statistically significant differences were detected in the acoustic startle response of males. (D) The mean ± SEM latency to the first sign of pain (seconds = s) in a hot plate assay is shown. *, ANOVA genotype effect p<0.05.</p

    Abnormal hematology in peripheral blood from homozygous <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> (A) Mean corpuscular volume (MCV, fL) of peripheral red blood cells from ∼12-week-old mice was measured on an automated analyzer. *, p<0.05, WT and heterozygous mutant mice vs. homozygous mutant mice, unpaired, two-tailed <i>t</i> test. Data shown as mean ± SEM. Percentage of reticulocytes (B) and absolute reticulocyte counts (C) on the specimens analyzed in (A) were determined manually by new methylene blue staining. *, p<0.05, WT and heterozygous mutant mice vs. homozygous mutant mice, unpaired, two-tailed <i>t</i> test. Data shown as mean ± SEM. (D) Linear regression analysis of data from (A) and (C). <i>r<sup>2</sup></i> = 0.32, p = 0.02. Datapoints represent individual mice.</p

    Subunit c immunohistochemistry of major hematopoietic tissues from 12-week-old <i>Cln3</i><sup>Δ</sup><sup><i>ex7/8</i></sup> mice.

    No full text
    <p>Representative images from bone marrow brush cytology, tibia cross-sections (‘Bone marrow histology’), and liver and spleen sections immunostained for subunit c are shown for wild-type (<i>Cln3<sup>+/+</sup></i>) and homozygous mutant (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) mice (n = 2−5 mice per tissue/genotype). Inset in <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> bone marrow cytology panel (top right panel) shows a sea-blue histiocyte (arrows) from an H&E stained preparation. Sea-blue histiocytes were not found in wild-type bone marrow cytology preparations. Brown stain reflects subunit c-positive storage material, which is most prominent in cells that appear morphologically consistent with macrophages. Arrowheads mark examples of subunit c filled Kupffer cells in liver, also a macrophage lineage cell. Insets in histology panels show lower power magnification of subunit c immunostain. Scale bars = 25 µm.</p

    Bone marrow analysis of <i>Cln3</i><sup>Δ</sup>

    No full text
    <p><sup><b><i>ex7/8</i></b></sup><b> mice.</b> Representative images are shown of Wright-Giemsa-stained bone marrow brush cytology, H&E stained sections of formalin-fixed, paraffin embedded tibias, and iron stained brush cytology, from wild-type (<i>Cln3<sup>+/+</sup></i>) and homozygous mutant (<i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup>) mice (n = 3 mice per genotype). Stained iron appears blue. Note the reduced amount of stained iron in <i>Cln3</i><b><sup>Δ</sup></b><sup><i>ex7/8/</i><b>Δ</b><i>ex7/8</i></sup> marrow, compared to wild-type marrow. Arrow, erythroid element; arrowhead, myeloid element; asterisk, megakaryocyte. Scale bars, top and bottom panels = 25 µm; middle panels = 100 µm.</p
    corecore