36 research outputs found

    Maximizing the Efficacy of CRISPR/Cas Homology-Directed Repair Gene Targeting

    Get PDF
    Clustered regularly interspaced short palindromic repeats/CRISPR-associated system (CRISPR/Cas) is a powerful gene editing tool that can introduce double-strand breaks (DSBs) at precise target sites in genomic DNA. In mammalian cells, the CRISPR/Cas-generated DSBs can be repaired by either template-free error-prone end joining (e.g., non-homologous end joining/microhomology-mediated end joining [NHEJ]/[MMEJ]) or templated error-free homology-directed repair (HDR) pathways. CRISPR/Cas with NHEJ/MMEJ DNA repair results in various length insertions/deletion mutations (indels), which can cause frameshift mutations leading to a stop codon and subsequent gene-specific knockout (i.e., loss of function). In contrast, CRISPR/Cas with HDR DNA repair, utilizing an exogenous repair template harboring specific nucleotide (nt) changes, can be employed to intentionally edit out or introduce mutations or insertions at specific genomic sites (i.e., targeted gene knock-in). This review provides an overview of HDR-based gene-targeting strategies to facilitate the knock-in process, including improving gRNA cleavage efficiency, optimizing HDR efficacy, decreasing off-target effects, suppressing NHEJ/MMEJ activity, and thus expediting the screening of CRISPR/Cas-edited clonal cells

    Myeloperoxidase-dependent oxidation of etoposide in human myeloid progenitor CD34+ cells

    Get PDF
    ABSTRACT Etoposide is a widely used anticancer drug successfully utilized for treatment of many types of cancer in children and adults. Its use, however, is associated with an increased risk of development of secondary acute myelogenous leukemia (t-AML) involving MLL gene MOL #68718

    Effects of DNA topoisomerase IIα splice variants on acquired drug resistance

    No full text
    DNA topoisomerase IIα (170 kDa, TOP2α/170) induces transient DNA double-strand breaks in proliferating cells to resolve DNA topological entanglements during chromosome condensation, replication, and segregation. Therefore, TOP2α/170 is a prominent target for anticancer drugs whose clinical efficacy is often compromised due to chemoresistance. Although many resistance mechanisms have been defined, acquired resistance of human cancer cell lines to TOP2α interfacial inhibitors/poisons is frequently associated with a reduction of Top2α/170 expression levels. Recent studies by our laboratory, in conjunction with earlier findings by other investigators, support the hypothesis that a major mechanism of acquired resistance to TOP2α-targeted drugs is due to alternative RNA processing/splicing. Specifically, several TOP2α mRNA splice variants have been reported which retain introns and are translated into truncated TOP2α isoforms lacking nuclear localization sequences and subsequent dysregulated nuclear-cytoplasmic disposition. In addition, intron retention can lead to truncated isoforms that lack both nuclear localization sequences and the active site tyrosine (Tyr805) necessary for forming enzyme-DNA covalent complexes and inducing DNA damage in the presence of TOP2α-targeted drugs. Ultimately, these truncated TOP2α isoforms result in decreased drug activity against TOP2α in the nucleus and manifest drug resistance. Therefore, the complete characterization of the mechanism(s) regulating the alternative RNA processing of TOP2α pre-mRNA may result in new strategies to circumvent acquired drug resistance. Additionally, novel TOP2α splice variants and truncated TOP2α isoforms may be useful as biomarkers for drug resistance, prognosis, and/or direct future TOP2α-targeted therapies

    Intronic Polyadenylation in Acquired Cancer Drug Resistance Circumvented by Utilizing CRISPR/Cas9 with Homology-Directed Repair: The Tale of Human DNA Topoisomerase IIα

    No full text
    Intronic polyadenylation (IPA) plays a critical role in malignant transformation, development, progression, and cancer chemoresistance by contributing to transcriptome/proteome alterations. DNA topoisomerase IIα (170 kDa, TOP2α/170) is an established clinical target for anticancer agents whose efficacy is compromised by drug resistance often associated with a reduction of nuclear TOP2α/170 levels. In leukemia cell lines with acquired resistance to TOP2α-targeted drugs and reduced TOP2α/170 expression, variant TOP2α mRNA transcripts have been reported due to IPA that resulted in the translation of C-terminal truncated isoforms with altered nuclear-cytoplasmic distribution or heterodimerization with wild-type TOP2α/170. This review provides an overview of the various mechanisms regulating pre-mRNA processing and alternative polyadenylation, as well as the utilization of CRISPR/Cas9 specific gene editing through homology directed repair (HDR) to decrease IPA when splice sites are intrinsically weak or potentially mutated. The specific case of TOP2α exon 19/intron 19 splice site editing is discussed in etoposide-resistant human leukemia K562 cells as a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. This example supports the importance of aberrant IPA in acquired drug resistance to TOP2α-targeted drugs. In addition, these results demonstrate the therapeutic potential of CRISPR/Cas9/HDR to impact drug resistance associated with aberrant splicing/polyadenylation

    Induction of Human Breast Cancer Cell Apoptosis from G2/M Preceded by Stimulation into the Cell Cycle by Z-1,1-dichloro-2,3-diphenylcyclopropane

    No full text
    We have shown previously that Z-1,1-dichloro-2,3-diphenylcyclopropane (a.k.a. Analog II, AII) inhibits human breast cancer cell proliferation regardless of estrogen receptor status or estrogen sensitivity, and that its cellular targets include microtubules. In the present study, we investigated the apoptosis-inducing effects of AII. MCF-7, MCF-7/LY2, and MDA-MB-231 cells all showed nuclear fragmentation in response to 100 μM AII when stained with Hoechst 33342 and examined by fluorescence microscopy. Pulsed field gel electrophoretic analysis showed that each of the cell lines also developed specific high molecular weight DNA fragments: a low level of 1–2 Mb fragments appeared after 6 hr, while 30–50 kb fragments accumulated subsequently. At 24 hr of drug exposure, the majority of cells became nonadherent, and the 30–50 kb fragments were restricted to detached MCF-7 and MDA-MB-231 cells. Both adherent and detached MCF-7/LY2 cells exhibited these fragments. A previous study by single-color (propidium) flow cytometry demonstrated that AII blocks MDA-MB-231 cells in G2/M of the cell cycle. More refined analyses in the present study showed this same result for MDA-MB-231 cells, but MCF-7 and MCF-7/LY2 cells did not reveal apparent drug-induced cell cycle block. AII demonstrated growth inhibitory, cell cycle-perturbing, and hypodiploidy-inducing activity against other human breast carcinoma lines, i.e. BT-20, CAMA-1, and SKBR-3, but no such actions in the non-tumorigenic, “normal” human breast epithelial line MCF-10A. Bromodeoxyuridine labeling and two-color flow cytometric analysis, however, suggested that AII caused stimulation into S phase, and that G2/M was the phase of the cell cycle from which cells apoptosed. AII caused cell rounding, detachment from the growth matrix, and nuclear shrinkage and fragmentation in parallel with biochemical changes. Cycloheximide inhibited AII-induced cell death, indicating that its toxicity requires de novo protein synthesis
    corecore