7 research outputs found

    A single-cell method to map higher-order 3D genome organization in thousands of individual cells reveals structural heterogeneity in mouse ES cells

    Get PDF
    In eukaryotes, the nucleus is organized into a three dimensional structure consisting of both local interactions such as those between enhancers and promoters, and long-range higher-order structures such as nuclear bodies. This organization is central to many aspects of nuclear function, including DNA replication, transcription, and cell cycle progression. Nuclear structure intrinsically occurs within single cells; however, measuring such a broad spectrum of 3D DNA interactions on a genome-wide scale and at the single cell level has been a great challenge. To address this, we developed single-cell split-pool recognition of interactions by tag extension (scSPRITE), a new method that enables measurements of genome-wide maps of 3D DNA structure in thousands of individual nuclei. scSPRITE maximizes the number of DNA contacts detected per cell enabling high-resolution genome structure maps within each cells and is easy-to-use and cost-effective. scSPRITE accurately detects chromosome territories, active and inactive compartments, topologically associating domains (TADs), and higher-order structures within single cells. In addition, scSPRITE measures cell-to-cell heterogeneity in genome structure at different levels of resolution and shows that TADs are dynamic units of genome organization that can vary between different cells within a population. scSPRITE will improve our understanding of nuclear architecture and its relationship to nuclear function within an individual nucleus from complex cell types and tissues containing a diverse population of cells

    RNA promotes the formation of spatial compartments in the nucleus

    Get PDF
    The nucleus is a highly organized arrangement of RNA, DNA, and protein molecules that are compartmentalized within three-dimensional (3D) structures involved in shared functional and regulatory processes. Although RNA has long been proposed to play a global role in organizing nuclear structure, exploring the role of RNA in shaping nuclear structure has remained a challenge because no existing methods can simultaneously measure RNA-RNA, RNA-DNA, and DNA-DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the location of all RNAs relative to DNA and other RNAs. Using this approach, we identify many RNAs that are localized near their transcriptional loci (RNA-DNA) together with other diffusible ncRNAs (RNA-RNA) within higher-order DNA structures (DNA-DNA). These RNA-chromatin compartments span three major classes of nuclear functions: RNA processing (including ribosome biogenesis, mRNA splicing, snRNA biogenesis, and histone mRNA processing), heterochromatin assembly, and gene regulation. More generally, we identify hundreds of ncRNAs that form stable nuclear compartments in spatial proximity to their transcriptional loci. We find that dozens of nuclear compartments require RNA to guide protein regulators into these 3D structures, and focusing on several ncRNAs, we show that these ncRNAs specifically regulate heterochromatin assembly and the expression of genes contained within these compartments. Together, our results demonstrate a unique mechanism by which RNA acts to shape nuclear structure by forming high concentration territories immediately upon transcription, binding to diffusible regulators, and guiding them into spatial compartments to regulate a wide range of essential nuclear functions

    RNA promotes the formation of spatial compartments in the nucleus

    Get PDF
    The nucleus is a highly organized arrangement of RNA, DNA, and protein molecules that are compartmentalized within three-dimensional (3D) structures involved in shared functional and regulatory processes. Although RNA has long been proposed to play a global role in organizing nuclear structure, exploring the role of RNA in shaping nuclear structure has remained a challenge because no existing methods can simultaneously measure RNA-RNA, RNA-DNA, and DNA-DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the location of all RNAs relative to DNA and other RNAs. Using this approach, we identify many RNAs that are localized near their transcriptional loci (RNA-DNA) together with other diffusible ncRNAs (RNA-RNA) within higher-order DNA structures (DNA-DNA). These RNA-chromatin compartments span three major classes of nuclear functions: RNA processing (including ribosome biogenesis, mRNA splicing, snRNA biogenesis, and histone mRNA processing), heterochromatin assembly, and gene regulation. More generally, we identify hundreds of ncRNAs that form stable nuclear compartments in spatial proximity to their transcriptional loci. We find that dozens of nuclear compartments require RNA to guide protein regulators into these 3D structures, and focusing on several ncRNAs, we show that these ncRNAs specifically regulate heterochromatin assembly and the expression of genes contained within these compartments. Together, our results demonstrate a unique mechanism by which RNA acts to shape nuclear structure by forming high concentration territories immediately upon transcription, binding to diffusible regulators, and guiding them into spatial compartments to regulate a wide range of essential nuclear functions

    Xist nucleates local protein gradients to propagate silencing across the X chromosome

    No full text
    The lncRNA Xist forms ∼50 diffraction-limited foci to transcriptionally silence one X chromosome. How this small number of RNA foci and interacting proteins regulate a much larger number of X-linked genes is unknown. We show that Xist foci are locally confined, contain ∼2 RNA molecules, and nucleate supramolecular complexes (SMACs) that include many copies of the critical silencing protein SPEN. Aggregation and exchange of SMAC proteins generate local protein gradients that regulate broad, proximal chromatin regions. Partitioning of numerous SPEN molecules into SMACs is mediated by their intrinsically disordered regions and essential for transcriptional repression. Polycomb deposition via SMACs induces chromatin compaction and the increase in SMACs density around genes, which propagates silencing across the X chromosome. Our findings introduce a mechanism for functional nuclear compartmentalization whereby crowding of transcriptional and architectural regulators enables the silencing of many target genes by few RNA molecules
    corecore