138 research outputs found
High temperature chemical kinetic study of the H2-CO-CO2-NO reaction system
An experimental study of the kinetics of the H2-CO-CO2-NO reaction system was made behind incident shock waves at temperatures of 2460 and 2950 K. The overall rate of the reaction was measured by monitoring radiation from the CO + O yields CO2 + h upoilon reaction. Correlation of these data with a detailed reaction mechanism showed that the high-temperature rate of the reaction N + OH yields NO + H can be described by the low-temperature (320 K) rate coefficient. Catalytic dissociation of molecular hydrogen was an important reaction under the tests conditions
An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion
A chemical kinetic mechanism for the combustion of hydrogen has been assembled and optimized by comparing the observed behavior as determined in shock tube and flame studies with that predicted by the mechanism. The reactions contained in the mechanism reflect the current state of knowledge of the chemistry of the hydrogen/air system, and the assigned rate coefficients are consistent with accepted values. It was determined that the mechanism is capable of satisfactorily reproducing the experimental results for a range of conditions relevant to scramjet combustion. Calculations made with the reaction mechanism for representative scramjet combustor conditions at Mach 8, 16, and 25 showed that chemical kinetic effects can be important and that combustor models which use nonequilibrium chemistry should be used in preference to models that assume equilibrium chemistry. For the conditions examined the results also showed the importance of including the HO2 chemistry in the mechanism. For Mach numbers less than 16, the studies suggest that an ignition source will most likely be required to overcome slow ignition chemistry. At Mach 25, the initial temperature and pressure was high enough that ignition was rapid and the presence of an ignition source did not significantly affect reaction rates
Analytical study of mechanisms for nitric oxide formation during combustion of methane in a jet-stirred combustor
The role of chemical kinetics in the formation of nitric oxide during the combustion of methane was examined analytically by means of a detailed chemical mechanism for the oxidation of methane, for the reaction between hydrocarbon fragments, and for the formation of nitric oxide. By comparing predicted nitric oxide levels with values reported in the literature from jet-stirred combuster experiments, it was determined that the nitric oxide levels observed in fuel-rich flames cannot be described by a mechanism in which the rate of nitric oxide formation is controlled solely by the kinetics of oxygen atom formation. A proposed mechanism for the formation of nitric oxide in methane-rich flames reproduces the observed levels. The oxidation of hydrogen cyanide appears to be an important factor in nitric oxide formation
An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels
The effect of initial nonequilibrium dissociated air constituents on the combustion of hydrogen in high-speed flows for a simulated Mach 17 flight condition was investigated by analyzing the results of comparative combustion experiments performed in a reflected shock tunnel test gas and in a shock expansion tunnel test gas. The results were analyzed and interpreted with a one-dimensional quasi-three-stream combustor code that includes finite rate combustion chemistry. The results of this study indicate that the combustion process is kinetically controlled in the experiments in both tunnels and the presence of the nonequilibrium partially dissociated oxygen in the reflected shock tunnel enhances the combustion. Methods of compensating for the effect of dissociated oxygen are discussed
Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide
The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed
A Chemical Kinetic Mechanism for the Ignition of Silane/Hydrogen Mixtures
A chemical kinetic reaction mechanism for the oxidation of silane/hydrogen mixtures is presented and discussed. Shock-tube ignition delay time data were used to evaluate and refine the mechanism. Good agreement between experimental results and the results predicted by the mechanism was obtained by adjusting the rate coefficient for the reaction SiH3 + O2 yields SiH2O + OH. The reaction mechanism was used to theoretically investigate the ignition characteristics of silane/hydrogen mixtures. The results revealed that over the entire range of temperature examined (800 K to 1200 K), substantial reduction in ignition delay times is obtained when silane is added to hydrogen
Effect of carbon dioxide and water vapor on the induction period of the hydrogen-oxygen reaction
Carbon dioxide and water vapor effects on induction period kinetics of hydrogen-oxygen reactio
Chemical kinetic modeling of propane oxidation behind shock waves
The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps
Chemical kinetic modeling of benzene and toluene oxidation behind shock waves
The oxidation of stoichiometric mixtures of benzene and toluene behind incident shock waves was studied for a temperature range from 1700 to 2800 K and a pressure range from 1.1 to 1.7 atm. The concentration of CO and CO2 produced were measured as well as the product of the oxygen atom and carbon monoxide concentrations. Comparisons between the benzene experimental data and results calculated by use of a reaction mechanism published in the open literature were carried out. With some additional reactions and changes in rate constants to reflect the pressure-temperature range of the experimental data, a good agreement was achieved between computed and experimental results. A reaction mechanism was developed for toluene oxidation based on analogous rate steps from the benzene mechanism. Measurements of NOx levels in an actual flame device, a jet-stirred combustor, were reproduced successfully by use of the reaction mechanism developed from the shock-tube experiments on toluene. These experimental measurements of NOx levels were reproduced from a computer simulation of a jet-stirred combustor
Ignition of mixtures of SiH sub 4, CH sub 4, O sub 2, and Ar or N sub 2 behind reflected shock waves
Ignition delay times in mixtures of methane, silane, and oxygen diluted with argon and nitrogen were measured behind reflected shock waves generated in the chemical kinetic shock tube at Langley Research Center. The delay times were inferred from the rapid increase in pressure that occurs at ignition, and the ignition of methane was verified from the emission of infrared radiation from carbon dioxide. Pressures of 1.25 atm and temperatures from 1100 K to 1300 K were generated behind the reflected shocks; these levels are representative of those occurring within a supersonic Ramjet combustor. Expressions for the ignition delay time as a function of temperature were obtained from least squares curve fits to the data for overall equivalence ratios of 0.7 and 1.0. The ignition delay times with argon as the diluent were longer than those with nitrogen as the diluent. The infrared wavelength observations at 4.38 microns for carbon dioxide indicated that silane and methane ignited simultaneously (i.e., within the time resolution of the measurement). A combined chemical kinetic mechanism for mixtures of silane, methane, oxygen, and argon or nitrogen was assembled from one mechanism that accurately predicted the ignition of methane and a second mechanism that accurately predicted silane hydrogen ignition. Comparisons between this combined mechanism and experiment indicated that additional reactions, possibly between silyl and methyl fragments, are needed to develop a good silane methane mechanism
- …