34 research outputs found
Informative frequency band identification for automatic extraction of impulsive components in vibration data from rotating machinery
In this paper authors address the issue of local damage detection in rolling element bearings in the presence of non-Gaussian noise. Typically damage detection problems concern the techniques of filtration, decomposition, separation, extraction etc. In such real-life cases, main difficulty lies in non-Gausianity of the noise present in the operational environment, hence popular denoising techniques cannot be used. In presented article, a real-life industrial scenario will be discussed and a new approach to cyclic component extraction will be presented. Classical detection methods are often not sufficient for the task because of high energy of impulsive noise in comparison to spectral structure of the damage. Proposed method utilizes Cyclic Spectral Coherence map as two-dimensional data representation, and Nonnegative Matrix Factorization as analytical tool to extract individual components
A new segmentation method of roadheader signal based on the statistical analysis of waiting times
Non-stationarity in time series data is one of the most important challenges in signal processing nowadays. One of the most often cases occurs when signal is a mixture of different processes that reveal different statistical properties. Common way to deal with is the data segmentation. In the following paper we propose an automatic segmentation procedure based on gamma distribution approach. In the algorithm we estimate the parameters of gamma distribution for subsequent batches of distance values between consecutive impulses (waiting times). Then we use Expectation-Maximization algorithm to classify estimated parameters. Obtained classes refer to particular signal segments. Procedure has been applied to real vibration signal from roadheader working in underground mining industry
Automatic calculation of thresholds for load dependent condition indicators by modelling of probability distribution functions – maintenance of gearboxes used in mining conveying system
Limit values for gearbox vibration-based condition indicators are key to determine in order to be able to estimate moment when object is in a need of maintenance. Further decision making process usually might utilize simple if-then-else rule using established threshold values. If diagnostic data takes the values from the Gaussian distribution, finding the decision boundaries is not difficult. Simplistically, that comes down to standard pattern recognition technique for “good condition” and “bad condition” based on probability density functions (PDFs) of diagnostic data. This situation is becoming more and more complicated when distribution is not Gaussian. Such cases require to develop much more advanced analytically solution. In this paper, we present the case of belt conveyor’s gearbox for which PDFs of diagnostic features overlap each other because of strong influence of time varying operating conditions on spectral features. New approach to automatic threshold recognition has been proposed based on modeling diagnostic features with Weibull distribution and using agglomerative clustering to distinguish classes of technical condition, which leads to determination of thresholds separating them
Segmentation algorithm of roadheader vibration signal based on the stable distribution parameters
In the real signal analysis the main problem is the non-stationarity of given data. The non-stationarity can be manifested in different ways. One of the possibility is the assumption that the signal is a mixture of different processes that exhibit different statistical properties. Thus before the further analysis the observed data should be segmented. In this paper we propose an automatic segmentation method which is based on α-stable distribution approach. In the proposed procedure we estimate the parameters of stable distribution for consecutive sub-signals of given length and then by using expectation-maximization algorithm we classify the parameters. The obtained classes correspond to different segments of the signal. The proposed procedure we apply to the real vibration signal from roadheader working in mining industry. As a final result we obtained segments of real signal which constitute samples of different behaviors and are related to different modes of operation of the machine
Combination of ICA and time-frequency representations of multichannel vibration data for gearbox fault detection
In the paper a multichannel vibration data processing method is presented in the context of local damage detection in gearboxes. The purpose of the approach is to obtain more reliable information about local damage when using several channels in comparison to results obtained for single channel vibration. The method is a combination of time-frequency representation and Independent Component Analysis (ICA) but applied not to raw time series but to each slice (along to time) from spectrogram. Finally we create new time-frequency map, that after aggregation clearly indicates presence of damage. In the paper we will present details of the method and benefits of using our procedure. We will refer to autocorrelation function of mentioned aggregated new time frequency map (1D signal) or simple spectrum (that might be somehow linked to classical envelope analysis). We believe that results are very convincing – detection of cyclic impulses associated to local damage are clearly identifiable. To validate our method we use real vibration data from heavy duty gearbox used in mining industry
Informative frequency band identification method using bi-frequency map clustering for fault detection in rotating machines
In presented work the problem of local damage detection in rolling element bearings is addressed. Usually such issues require the usage of the techniques of decomposition, separation etc. In such real industrial cases main difficulty lies in relatively low signal-to-noise ratio as well as unpredictable distribution of damage-related information in the frequency domain, hence the typical methods cannot be used. In this paper such industrial scenario is addressed and a simple yet effective approach to underlying component extraction will be discussed. Proposed method analyzes Cyclic Spectral Coherence map as starting data representation, and Expectation-Maximization is used as analytical tool to determine the informative frequency band (IFB) for impulsive component localization in the carrier frequency spectrum. Finally, based on identified IFB, the bandpass filter is constructed to extract the impulsive component from the input signal
Mobile based vibration monitoring and its application to road quality monitoring in deep underground mine
Road quality is an important issue in everyday life for all car owners. This issue seems to be critically important in underground mines, where LHD machines are used for material transport. One of the biggest problems for LHD operation is relatively quick tires degradation. One of possible reasons might be road surface quality, indeed. However, driver's skills as well as ways of machine operation (loading, acceleration, breaking...) might also play a crucial role. Nowadays, many of machines are equipped with onboard monitoring system that allows to monitor basic parameters (speed, torque, temperatures, pressures etc.) at some predefined components. To complete the picture, we propose to use proposed already (but not for mining applications) vibration measurement for road roughness evaluation. To measure vibration acceleration is relatively easy task (we used simple smartphone here), unfortunately method of parametrization and concluding about road quality is still a challenge in mining case. In this paper we have presented a short communication related to first experimental work and some ideas how to deal with this problem using statistical tools for signal modeling
Combination of principal component analysis and time-frequency representations of multichannel vibration data for gearbox fault detection
A multichannel vibration data processing method in the context of local damage detection in gearboxes is presented in this paper. The purpose of the approach is to achieve more reliable information about local damage by using several channels in comparison to results obtained by single channel vibration analysis. The method is a combination of time-frequency representation and Principal Component Analysis (PCA) applied not to the raw time series but to each slice (along the time) from its spectrogram. Finally, we create a new time-frequency map which aggregated clearly indicates presence of the damage. Details and properties of this procedure are described in this paper, along with comparison to single-channel results. We refer to autocorrelation function of the new aggregated time frequency map (1D signal) or simple spectrum (that might be somehow linked to classical envelope analysis). The results are very convincing – cyclic impulses associated with local damage might be clearly detected. In order to validate our method, we used a model of vibration data from heavy duty gearbox exploited in mining industry
Mobile based vibration monitoring and its application to road quality monitoring in deep underground mine
Road quality is an important issue in everyday life for all car owners. This issue seems to be critically important in underground mines, where LHD machines are used for material transport. One of the biggest problems for LHD operation is relatively quick tires degradation. One of possible reasons might be road surface quality, indeed. However, driver's skills as well as ways of machine operation (loading, acceleration, breaking...) might also play a crucial role. Nowadays, many of machines are equipped with onboard monitoring system that allows to monitor basic parameters (speed, torque, temperatures, pressures etc.) at some predefined components. To complete the picture, we propose to use proposed already (but not for mining applications) vibration measurement for road roughness evaluation. To measure vibration acceleration is relatively easy task (we used simple smartphone here), unfortunately method of parametrization and concluding about road quality is still a challenge in mining case. In this paper we have presented a short communication related to first experimental work and some ideas how to deal with this problem using statistical tools for signal modeling
Time-Varying Spectral Kurtosis: Generalization of Spectral Kurtosis for Local Damage Detection in Rotating Machines under Time-Varying Operating Conditions
Vibration-based local damage detection in rotating machines (i.e., rolling element bearings) is typically a problem of detecting low-energy cyclic impulsive modulations in the measured signal. This can be challenging as both the amplitude of a single damage-related impulse and the distance between impulses might be changing in time. From the signal processing point of view, this means time varying regarding the the signal-to-noise ratio, location of information in the frequency domain, and loss of periodicity (this remains cyclic but not periodic). One of the many attempted approaches to this problem is filtration using custom filters derived in a data-driven fashion. One of the methods to obtain such filters is a selector approach, where the value of a certain statistic is calculated for individual frequency bands of a signal that results in the magnitude response of a filter. In this approach, each chosen statistic will yield different results, and the obtained filter will be focused on different frequency bands focusing on different behaviors. One of the most popular and powerful selectors is spectral kurtosis as popularized by Antoni, which uses kurtosis as an operational statistic. Unfortunately, after closer inspection, it is easy to notice that, although selectors can significantly enhance the signal, they accumulate a great deal of noise and other background content of signals, which occupies the space (or rather time) in between the impulses. Another disadvantage is that such filters are time-invariant, because, in the principle of their construction, they are not adaptive, and even slight changes in the signal yield suboptimal results either by missing relevant data when the conditions in the signal change (i.e., informative impulses widen in bandwidth), or by accumulating unnecessary noise when the relevant information is not present (in between impulses or in frequency bands that impulses no longer occupy). To address this issue, I propose generalization of the selector approach using the example of spectral kurtosis. This assumes creating a time-varying selector that can be seen as a spatial filter in the time-frequency domain. The time-varying SK (TVSK) is estimated for segments of the signal, and, instead of a vector of SK-based filter coefficients, one obtains a TVSK-based matrix of coefficients that takes into account the time-varying properties of the signal. The obtained structure is then binarized and used as a filter. The presented method is tested using a simulated signal as well as two real-life signals measured on heavy-duty bearings in two different types of machine