Combination of ICA and time-frequency representations of multichannel vibration data for gearbox fault detection

Abstract

In the paper a multichannel vibration data processing method is presented in the context of local damage detection in gearboxes. The purpose of the approach is to obtain more reliable information about local damage when using several channels in comparison to results obtained for single channel vibration. The method is a combination of time-frequency representation and Independent Component Analysis (ICA) but applied not to raw time series but to each slice (along to time) from spectrogram. Finally we create new time-frequency map, that after aggregation clearly indicates presence of damage. In the paper we will present details of the method and benefits of using our procedure. We will refer to autocorrelation function of mentioned aggregated new time frequency map (1D signal) or simple spectrum (that might be somehow linked to classical envelope analysis). We believe that results are very convincing – detection of cyclic impulses associated to local damage are clearly identifiable. To validate our method we use real vibration data from heavy duty gearbox used in mining industry

    Similar works