11 research outputs found

    Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression

    Get PDF
    ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data showthatBRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination sitecentred BRM occupancy profile. We found that BRMbound 3� gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets

    Paraoxonase (PON)-1 activity in overweight and obese children and adolescents: association with obesity-related inflammation and oxidative stress

    No full text
    Paraoxonase-1 (PON1) is a HDL-attached extracellular esterase which is believed to contribute to the anti-atherogenic and anti-inflammatory properties of HDL. A decrease in PON1 is a risk factor for cardiovascular disease and has recently been found to be associated with juvenile obesity. The issue of a possible association between enzyme activity and/or its phenotype distribution and obesity-related metabolic abnormalities, inflammation, and oxidative stress has not been addressed yet. To evaluate PON1 activity and phenotype distribution with respect to obesity and obesity-related metabolic disorders, inflammation and oxidative stress in children and adolescents. PON1 arylesterase activity was measured spectrophotometrically in 156 children and adolescents (47 lean, 27 overweight and 82 obese). Enzyme phenotype was determined using dual substrate (phenyl acetate/paraoxon) method. PON1 activity and phenotype distribution were related to the presence of obesity, metabolic syndrome, insulin resistance, hyperinsulinemia, hypertriglyceridemia, high blood pressure, low HDL level, impaired fasting glucose and/or glucose tolerance as well as inflammatory and oxidative stress indices. PON1 arylesterase activity decreased in general and central obesity, high blood pressure, and hyperinsulinemia conditions and correlated with BMI, CRP, adipocyte fatty acid-binding protein, superoxide dismutase, catalase, glutathione peroxidase, free thiols, and HOMA in a gender-dependent manner. PON1 decreases were independently associated with central obesity in girls, explaining 17% in PON1 variability, and with elevated CRP in boys, explaining 12% in its variability. PON1 phenotype was not associated with frequency of metabolic abnormalities. PON1 decreases in central obesity, exacerbating obesity-related inflammation and oxidative stress. The enzyme associations are gender-dependent: obesity and oxidative stress affects PON1 in girls whereas inflammation in boy

    <i>brm</i> mutants show GA-related phenotypic traits and increased sensitivity to paclobutrazol.

    No full text
    <p>(A), Comparison of <i>brm-1</i> and <i>ga1-3</i> mutants grown on ½ MS medium for 18 days under long-day conditions. (B), Germination of the <i>brm-1</i> mutant is abolished in the presence of 10 µM PAC and rescued upon addition of exogenous gibberellin. The progeny of <i>brm-1/BRM</i> plants were analyzed 14 days after sowing. (C), Phenotype of <i>brm-1</i> plants grown for 25 days on 10 µM PAC after incubation of seeds with exogenous GA. (D), Germination assay of wild type, <i>brm-3</i> and <i>3xdella</i> (<i>rga/rgl1/rgl2</i>) lines. Seed coat rupture after 14 days was scored as germination. (E), Root elongation assay of wild type and <i>brm-3</i> plants grown for 12 days on PAC-containing medium. Bars in A, C and E = 5 mm.</p

    <i>ga1-3/brm-1</i> mutant phenotypes.

    No full text
    <p>(A–B), Phenotypes of the <i>ga1-3</i>, <i>brm-1</i> and <i>ga1-3/brm-1</i> mutants grown on MS medium (18-d-old seedlings, A) or in soil (22-d-old plants, B). Bars = 10 mm. (C–F), Quantitative characterization of <i>brm-1</i>, <i>ga1-3</i> and <i>ga1-3/brm-1</i> mutants: root length of 18-d-old seedlings (C), rosette diameter at maturity (D) and flowering time under LD conditions (E). Data are the means ± s.d., 10 plants of each line were scored, except for <i>ga1-3/brm-1</i> (7 plants). * All <i>ga1-3/brm-1</i> plants except one failed to flower by the end of the experiment (80 days). (F), RT-qPCR analysis of relative transcript levels of <i>GA3ox1</i> and <i>SCL3</i> in 20-d-old wild type, <i>brm-1</i>, <i>ga1-3</i>, and <i>ga1-3/brm-1</i> lines. RT-qPCR data are the means ± s.d. of 3 biological replicates. Transcript levels in the wild type were set to 1.</p

    BRM acts through distinct mechanisms to regulate GA-mediated responses.

    No full text
    <p>(A), Germination of the <i>brm-1</i> mutant on 10 µM PAC is rescued by the <i>triple della</i> mutation. The progeny of <i>brm-1/BRM</i> plants were analyzed 10 days after sowing. (B), Phenotypes of 3-week-old plants grown on 2.5 µM PAC. The <i>brm-1/3xdella</i> line shows an intermediate growth phenotype. Bar = 5 mm. (C), RT-qPCR analysis of relative transcript levels of the <i>OFP16, EXP5, CYS2</i> and <i>LTP2</i> genes in 18-d-old wild type, <i>brm-1</i>, <i>ga1-3</i>, <i>ga1-3/brm-1</i>, <i>ga1-3/3xdella</i> and <i>ga1-3/brm-1/3xdella</i> lines. Transcript levels in the wild type were set to 1. Data are the means ± s.d. of 3 biological replicates. (D), Model of the role of BRM in regulating the expression of GA-responsive genes. BRM positively regulates the <i>GA3ox1</i> and <i>SCL3</i> genes involved in GA biosynthesis and signaling, and probably through this influences the expression of many GA-responsive genes in the opposite manner to DELLA repressors. In addition, BRM seems to act on a subset of GA-responsive genes independently of DELLA repressors. Also in this case, the effect exerted by BRM is typically in the opposite direction to that of DELLAs and is observed both for genes up- and down-regulated by the SWI/SNF complex (blue and red lines, respectively).</p

    BRM directly regulates the expression of the <i>GA3ox1</i> and <i>SCL3</i> genes.

    No full text
    <p>(A), RT-qPCR analysis of relative transcript levels of GA biosynthesis and signaling genes in 18-d-old wild type, <i>brm-1</i> and <i>brm-3</i> lines. The housekeeping genes <i>PP2A</i> and <i>GAPC</i> were used as normalization controls. RT-qPCR data are the means ± s.d. of 3 biological replicates. Transcript levels in the wild type were set to 1. Asterisks indicate significant differences from the wild type plants with p<0.05 (*) or p<0.01 (**). (B), Simplified model of the GA signaling pathway. (C), BRM recruitment to the promoters of <i>GA3ox1</i> and <i>SCL3</i> in wild type and <i>brm-1</i> plants, analyzed by ChIP-qPCR. The signal obtained for the <i>PP2A</i> promoter region was used to normalize the qPCR results in each sample. Distal (d) and proximal (p) promoter sequences relative to the start codon of each gene were analyzed. Fold enrichment of each region in the wild type was calculated relative to the <i>brm-1</i> sample. The value of ChIP enrichment in <i>brm-1</i> was set to 1. Data are the means ± s.e. from 3 reactions in one ChIP experiment. Similar results were obtained in separate experiments.</p

    GA responses of the <i>brm-1</i> mutant.

    No full text
    <p>(A, B), Elongation of <i>brm-1</i> hypocotyls and roots in response to 1 µM GA<sub>4</sub>. Plants were grown on ½ MS medium for 8 days under long-days conditions in the presence or absence of 1 µM GA<sub>4</sub>. GA application caused considerable elongation of the hypocotyls, but had little effect on <i>brm-1</i> root growth. Bar = 5 mm. (B), Hypocotyl length of plants grown as in A. Presented data are the means of 12 measurements ± s.d. (C), Flowering of <i>brm-1</i> plants in response to exogenous gibberellins. Plants were grown in soil under short-day conditions and treated with 10 µM GA<sub>3</sub>. At least 15 plants of each line/condition were scored. Data are the means ± s.d. Asterisks indicate significant differences from the wild type plants (p<0.01).</p
    corecore