30 research outputs found

    Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study

    Get PDF
    In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12) and conventional stainless steel conical (n = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks

    An in vivo model of anti-inflammatory activity of subdural dexamethasone following the spinal cord injury

    Get PDF
    Current therapies to limit the neural tissue destruction following the spinal cord injury are not effective. Our recent studies indicate that the injury to the white matter of the spinal cord results in a severe inflammatory response where macrophages phagocytize damaged myelin and the fluid-filled cavity of injury extends in size with concurrent and irreversible destruction of the surrounding neural tissue over several months. We previously established that a high dose of 4mg/rat of dexamethasone administered for 1 week via subdural infusion remarkably lowers the numbers of infiltrating macrophages leaving large amounts of un-phagocytized myelin debris and therefore inhibits the severity of inflammation and related tissue destruction. But this dose was potently toxic to the rats. In the present study the lower doses of dexamethasone, 0.125–2.0mg, were administered via the subdural infusion for 2 weeks after an epidural balloon crush of the mid-thoracic spinal cord. The spinal cord cross-sections were analyzed histologically. Levels of dexamethasone used in the current study had no systemic toxic effect and limited phagocytosis of myelin debris by macrophages in the lesion cavity. The subdural infusion with 0.125–2.0mg dexamethasone over 2 week period did not eliminate the inflammatory process indicating the need for a longer period of infusion to do so. However, this treatment has probably lead to inhibition of the tissue destruction by the severe, prolonged inflammatory process

    Neuroprotective Effect of Subdural Infusion of Serp-1 in Spinal Cord Trauma

    No full text
    Spinal cord injury (SCI) initiates a severe, destructive inflammation with pro-inflammatory, CD68+/CD163−, phagocytic macrophages infiltrating the area of necrosis and hemorrhage by day 3 and persisting for the next 16 weeks. Inhibition of macrophage infiltration of the site of necrosis that is converted into a cavity of injury (COI) during the first week post-SCI, should limit inflammatory damage, shorten its duration and result in neuroprotection. By sustained subdural infusion we administered Serp-1, a Myxoma virus-derived immunomodulatory protein previously shown to improve neurologic deficits and inhibit macrophage infiltration in the COI in rats with the balloon crush SCI. Firstly, in a 7 day long study, we determined that the optimal dose for macrophage inhibition was 0.2 mg/week. Then, we demonstrated that a continuous subdural infusion of Serp-1 for 8 weeks resulted in consistently accelerated lowering of pro-inflammatory macrophages in the COI and in their almost complete elimination similar to that previously observed at 16 weeks in untreated SCI rats. The macrophage count in the COI is a quantitative test directly related to the severity of destructive inflammation initiated by the SCI. This test has consistently demonstrated anti-inflammatory effect of Serp-1 interpreted as neuroprotection, the first and necessary step in a therapeutic strategy in neurotrauma

    Local Serpin Treatment via Chitosan-Collagen Hydrogel after Spinal Cord Injury Reduces Tissue Damage and Improves Neurologic Function

    No full text
    Spinal cord injury (SCI) results in massive secondary damage characterized by a prolonged inflammation with phagocytic macrophage invasion and tissue destruction. In prior work, sustained subdural infusion of anti-inflammatory compounds reduced neurological deficits and reduced pro-inflammatory cell invasion at the site of injury leading to improved outcomes. We hypothesized that implantation of a hydrogel loaded with an immune modulating biologic drug, Serp-1, for sustained delivery after crush-induced SCI would have an effective anti-inflammatory and neuroprotective effect. Rats with dorsal column SCI crush injury, implanted with physical chitosan-collagen hydrogels (CCH) had severe granulomatous infiltration at the site of the dorsal column injury, which accumulated excess edema at 28 days post-surgery. More pronounced neuroprotective changes were observed with high dose (100 µg/50 µL) Serp-1 CCH implanted rats, but not with low dose (10 µg/50 µL) Serp-1 CCH. Rats treated with Serp-1 CCH implants also had improved motor function up to 20 days with recovery of neurological deficits attributed to inhibition of inflammation-associated tissue damage. In contrast, prolonged low dose Serp-1 infusion with chitosan did not improve recovery. Intralesional implantation of hydrogel for sustained delivery of the Serp-1 immune modulating biologic offers a neuroprotective treatment of acute SCI

    Loss of Kaiso expression in breast cancer cells prevents intra-vascular invasion in the lung and secondary metastasis

    No full text
    <div><p>The metastatic activity of breast carcinomas results from complex genetic changes in epithelial tumor cells and accounts for 90% of deaths in affected patients. Although the invasion of the local lymphatic vessels and veins by malignant breast tumor cells and their subsequent metastasis to the lung, has been recognized, the mechanisms behind the metastatic activity of breast tumor cells to other distal organs and the pathogenesis of metastatic cancer are not well understood. In this study, we utilized derivatives of the well-established and highly metastatic triple negative breast cancer (TNBC) cell line MDA-MB-231 (MDA-231) to study breast tumor metastasis in a mouse model. These MDA-231 derivatives had depleted expression of Kaiso, a POZ-ZF transcription factor that is highly expressed in malignant, triple negative breast cancers. We previously reported that Kaiso depletion attenuates the metastasis of xenografted MDA-231 cells. Herein, we describe the pathological features of the metastatic activity of parental (Kaiso<sup>positive</sup>) versus Kaiso<sup>depleted</sup> MDA-231 cells. Both Kaiso<sup>positive</sup> and Kaiso<sup>depleted</sup> MDA-231 cells metastasized from the original tumor in the mammary fat pad to the lung. However, while Kaiso<sup>positive</sup> cells formed large masses in the lung parenchyma, invaded large pulmonary blood vessels and formed secondary metastases and large tumors in the distal organs, Kaiso<sup>depleted</sup> cells metastasized only to the lung where they formed small metastatic lesions. Importantly, intravascular invasion and secondary metastases in distal organs were not observed in mice xenografted with Kaiso<sup>depleted</sup> cells. It thus appears that the lung may constitute a barrier for less invasive breast tumors such as the Kaiso<sup>depleted</sup> TNBC cells; this barrier may limit tumor growth and prevents Kaiso<sup>depleted</sup> TNBC cells from invading the pulmonary blood vessels and forming secondary metastases in distal organs.</p></div

    Primary subcutaneous tumors formed by Kaiso<sup>positive</sup> and kaiso<sup>depleted</sup> cells with invasion of the lumen of surrounding veins.

    No full text
    <p>Subcutaneous tumor mass of Kaiso<sup>positive</sup> MDA-231 human mammary carcinoma cells (Ai, ii) and Kaiso<sup>depleted</sup> tumor cells (Aiii, iv)) implanted into the fat pad of the mammary gland of female NRG mice. Tumor cells abut against the epidermis (arrow in Ai, iii) but do not invade it. Tumor cells are large, markedly pleomorphic, there is high mitotic index. (Bi) A vein (Bv, delineated by arrowheads) is adjacent to the subcutaneous tumor mass (Tm). It is distended by clumps and individual large pleomorphic cells (Bii) and also has scattered red blood cells. H&E. Size bars Ai, ii, Bi– 500 microns; Aii, iv, Bii– 50 microns.</p

    Intravascular invasion of secondary metastatic Kaiso<sup>positive</sup> tumors.

    No full text
    <p>Low magnification images (A, C, E) and high magnification images (B, D, F) of tissue regions outlined by white dotted lines in A, C and E. Kaiso<sup>positive</sup> cells metastatic to the liver (A, B) and kidney (C, D) formed large tumors and invaded adjacent blood vessels with formation of thrombi (Th in B, D) delineated from the surrounding tissue by yellow arrows. Tumor masses in the myocardium (white box and arrowhead in E) often resulted in invasion of the ventricle (asterix) with formation of a mass (white box in E) and thrombus (Th in F). Thrombus is delineated from myocardium (my) by yellow arrows in F. There is continuity between the masses of tumor cells in the myocardium and in the intraventricular thrombus (F). H&E. Size bars; A, C, E– 1,000 microns, B, D, F– 50 microns.</p
    corecore