1,949 research outputs found

    One place doesn't fit all: improving the effectiveness of sustainability standards by accounting for place

    Get PDF
    Includes bibliographical references (pages 8-10).The growing interest in incentivizing sustainable agricultural practices is supported by a large network of voluntary production standards, which aim to offer farmers and ranchers increased value for their product in support of reduced environmental impact. To be effective with producers and consumers alike, these standards must be both credible and broadly recognizable, and thus are typically highly generalizable. However, the environmental impact of agriculture is strongly place-based and varies considerably due to complex biophysical, socio-cultural, and management-based factors, even within a given sector in a particular region. We suggest that this contradiction between the placeless generality of standards and the placed-ness of agriculture renders many sustainability standards ineffective. In this policy and practice review, we examine this contradiction through the lens of beef production, with a focus on an ongoing regional food purchasing effort in Denver, Colorado, USA. We review the idea of place in the context of agricultural sustainability, drawing on life cycle analysis and diverse literature to find that recognition of place-specific circumstances is essential to understanding environmental impact and improving outcomes. We then examine the case of the Good Food Purchasing Program (GFPP), a broad set of food-purchasing standards currently being implemented for institutional purchasing in Denver. The GFPP was created through a lengthy stakeholder-inclusive process for use in Los Angeles, California, USA, and has since been applied to many cities across the country. The difference between Los Angeles' process and that of applying the result of Los Angeles' process to Denver is instructive, and emblematic of the flaws of generalizable sustainability standards themselves. We then describe the essential elements of a place-based approach to agricultural sustainability standards, pointing toward a democratic, process-based, and outcome-oriented strategy that results in standards that enable rather than hinder the creativity of both producers and consumers. Though prescription is anathema to our approach, we close by offering a starting point for the development of standards for beef production in Colorado that respect the work of people in place

    Identification of strong photometric activity in the components of LHS 1070

    Full text link
    Activity in low-mass stars is an important ingredient in the evolution of such objects. Fundamental physical properties such as age, rotation, magnetic field are correlated with activity. Aims: We show that two components of the low-mass triple system LHS 1070 exhibit strong flaring activity. We identify the flaring components and obtained an improved astrometric solution for the LHS 1070 A/(B+C) system. Methods: Time-series CCD observations were used to monitor LHS 1070 in the B and I_C bands. H-band data were used to obtain accurate astrometry for the LHS 1070 A/(B+C) system. Results: We have found that two components of the triple system LHS 1070 exhibit photometric activity. We identified that components A and B are the flaring objects. We estimate the total energy, ~2.0 x 10^{33} ergs, and the magnetic field strength, ~5.5 kG, of the flare observed in LHS 1070 B. This event is the largest amplitude, \Delta B > 8.2 mag, ever observed in a flare star.Comment: 5 pages, 5 figures, accepted for publication in A&

    Recovering variable stars in large surveys: EA_(up) Algol-type class in the Catalina Survey

    Get PDF
    The discovery and characterization of Algol eclipsing binaries (EAs) provide an opportunity to contribute for a better picture of the structure and evolution of low-mass stars. However, the cadence of most current photometric surveys hinders the detection of EAs since the separation between observations is usually larger than the eclipse(s) duration and hence few measurements are found at the eclipses. Even when those objects are detected as variable, their periods can be missed if an appropriate oversampling factor is not used in the search tools. In this paper, we apply this approach to find the periods of stars catalogued in the Catalina Real-Time Transient Survey (CRTS) as EAs having unknown period (EA_(up)). As a result, the periods of ∼56percent of them were determined. Eight objects were identified as low-mass binary systems and modelled with the Wilson & Devinney synthesis code combined with a Markov chain Monte Carlo optimization procedure. The computed masses and radii are in agreement with theoretical models and show no evidence of inflated radii. This paper is the first of a series aiming to identify suspected binary systems in large surveys

    Revised ephemeris and orbital period derivative of the supersoft X-ray source CAL 87 based on 34 years of observations

    Full text link
    In this study, we present an analysis of over 34 years of observational data from CAL 87, an eclipsing supersoft X-ray source. The primary aim of our study, which combines previously analysed measurements as well as unexplored publicly available datasets, is to examine the orbital period evolution of CAL 87. After meticulously and consistently determining the eclipse timings, we constructed an O−-C (observed minus calculated) diagram using a total of 38 data points. Our results provide confirmation of a positive derivative in the system's orbital period, with a determined value of P˙=+8.18±1.46×10−11\dot{P}=+ 8.18\pm1.46\times10^{-11} s/s. We observe a noticeable jitter in the eclipse timings and additionally identify a systematic delay in the X-ray eclipses compared to those observed in longer wavelengths. We discuss the interplay of the pertinent factors that could contribute to a positive period derivative and the inherent variability in the eclipses.Comment: 5 pages, 4 figures. Accepted to MNRA

    Recovering variable stars in large surveys: EA_(up) Algol-type class in the Catalina Survey

    Get PDF
    The discovery and characterization of Algol eclipsing binaries (EAs) provide an opportunity to contribute for a better picture of the structure and evolution of low-mass stars. However, the cadence of most current photometric surveys hinders the detection of EAs since the separation between observations is usually larger than the eclipse(s) duration and hence few measurements are found at the eclipses. Even when those objects are detected as variable, their periods can be missed if an appropriate oversampling factor is not used in the search tools. In this paper, we apply this approach to find the periods of stars catalogued in the Catalina Real-Time Transient Survey (CRTS) as EAs having unknown period (EA_(up)). As a result, the periods of ∼56percent of them were determined. Eight objects were identified as low-mass binary systems and modelled with the Wilson & Devinney synthesis code combined with a Markov chain Monte Carlo optimization procedure. The computed masses and radii are in agreement with theoretical models and show no evidence of inflated radii. This paper is the first of a series aiming to identify suspected binary systems in large surveys
    • …
    corecore