7 research outputs found

    Plant growth promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe

    Get PDF
    Ginger (Zingiber officinale Roscoe) is an important medicinal crop grown for its aromatic rhizome which is used as a spice, food, flavouring agent and medicine. It has been characterised for its hypoglycemic, hypotensive, antioxidant and antibiotic properties. This study was conducted to determine the impact of plant growth-promoting potential of bacterial strain Bacillus subtilis L2 on plant growth and physiological properties of ginger. The experiment was carried out in randomised block design with three replications in pot experiments. The plants were grown in greenhouse conditions for three months. The results showed that at 8 and 12 weeks after planting (WAP) bacterial inoculation increased plant height, leaf length, number of leaves per plant and leaf width. Inoculation with B. subtilis L2 significantly increased plant height by 16, 20 and 18% compared to control at 4, 8 and 12 WAP. At 8 and 12 WAP, leaf length significantly raised by B. subtilis L2 as compared to uninoculated control. B. subtilis L2 significantly increased the number of leaves per plant and leaf width by 30 and 21% respectively when comparing with non-inoculated plants at 8 WAP. The percentage increase in chlorophyll content resulted from the inoculation with B. subtilis L2 over the control was 10.5%, 15.5% and 18.4% at 4, 8 and 12 WAP respectively. It is concluded that there is a significant positive effect of inoculation with B. subtilis L2 on the growth of ginger. B. subtilis L2 strain can be used as a potential agent or bio-fertiliser for stimulation of ginger growth

    Alleviation of Salt Stress in Legumes by Co-inoculation with Pseudomonas and Rhizobium

    No full text
    Abstract Numerous studies have shown that soil salinity decreases nodulation and dramatically reduces N 2 fi xation and nitrogenase activity of nodulated legumes. Thus, the development of salt-tolerant symbioses is an absolute necessity to enable cultivation of leguminous crops in salt-affected soils. Dual inoculation of legumes with plant growth-promoting rhizobacteria (PGPR) and rhizobia has been reported to increase the number of nodules compared to those formed by a rhizobial strain alone. The production of IAA by Pseudomonas strains represents a benefi cial mechanism that promoted enlargement of root system and thereby further enhanced nutrient uptake, nodulation, and shoot growth of leguminous plants. When PGPR are able to alleviate salt stress experienced by the plant, more nodules might develop into nitrogen-fi xing ones, thereby enabling the plant to obtain part of its nitrogen from the atmosphere. Co-inoculation techniques could be a new approach to increas

    Co-inoculation of rhizobacteria and biochar application improves growth and nutrientsin soybean and enriches soil nutrients and enzymes

    No full text
    Gradual depletion in soil nutrients has affected soil fertility, soil nutrients, and the activities of soil enzymes. The applications of multifarious rhizobacteria can help to overcome these issues, however, the effect of co-inoculation of plant-growth promoting rhizobacteria (PGPR) and biochar on growth andnutrient levelsin soybean and on the level of soil nutrients and enzymes needs in-depth study. The present study aimed to evaluate the effect of co-inoculation of multifarious Bradyrhizobium japonicum USDA 110 and Pseudomonas putida TSAU1 and different levels (1 and 3%) of biochar on growth parameters and nutrient levelsin soybean and on the level of soil nutrients and enzymes. Effect of co-inoculation of rhizobacteria and biochar (1 and 3%) on the plant growth parameters and soil biochemicals were studied in pot assay experiments under greenhouse conditions. Both produced good amounts of indole-acetic acid; (22 and 16 μ g mL-1), siderophores (79 and 87%SU), and phosphate solubilization (0.89 and 1.02 99 g mL-1). Co-inoculation of B. japonicum with P. putida and 3% biochar significantly improved the growth and nutrient content ofsoybean and the level of nutrients and enzymes in the soil, thus making the soil more fertile to support crop yield. The results of this research provide the basis of sustainable and chemical-free farming for improved yields and nutrients in soybean and improvement in soil biochemical properties
    corecore