13 research outputs found

    Enabling generic wireless coexistence through technology-agnostic dynamic spectrum access

    Get PDF
    Every year that passes, new standardized and proprietary wireless communication technologies are introduced in the market that seeks to find its place within the already highly congested spectrum. Regulation bodies all around the globe are struggling to keep up with the continuously increasing demand for new bands to offer to specific technologies, some of them requiring by design an exclusive frequency band in order to operate efficiently. Even wireless bands offered for public or scientific usage like the ISM bands are becoming the natural habitat of multiple wireless technologies that seek to use or abuse them in order to provide even more bandwidth to their offered applications. Wireless research teams targeting heterogeneous wireless communication coexistence are developing techniques for enabling one-to-one coexistence between various wireless technologies. Can such an exhaustive approach be the solution for N wireless technologies that wish to operate in the same band? We believe that a one-to-one approach is inefficient and cannot lead to a generic coexistence paradigm, applicable to every existing or new wireless communication technology that will arise in the future. Can another approach provide a more generic solution in terms of frequency reuse and coexistence compared to the one-dimensional frequency separation approach commonly used in commercial deployments today. Can such a generic approach provide a simple and easily adoptable coexistence model for existing technologies? In this paper we present a new generic medium sharing model that solves the huge coexistence problems observed today in a simple and efficient way. Our approach is technology-agnostic and compatible with all existing wireless communication technologies and also has the capability to support emerging ones with minimum overhead

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers

    Portability, compatibility and reuse of MAC protocols across different IoT radio platforms

    Get PDF
    To cope with the diversity of Internet of Things (loT) requirements, a large number of Medium Access Control (MAC) protocols have been proposed in scientific literature, many of which are designed for specific application domains. However, for most of these MAC protocols, no multi-platform software implementation is available. In fact, the path from conceptual MAC protocol proposed in theoretical papers, towards an actual working implementation is rife with pitfalls. (i) A first problem is the timing bugs, frequently encountered in MAC implementations. (ii) Furthermore, once implemented, many MAC protocols are strongly optimized for specific hardware, thereby limiting the potential of software reuse or modifications. (iii) Finally, in real-life conditions, the performance of the MAC protocol varies strongly depending on the actual underlying radio chip. As a result, the same MAC protocol implementation acts differently per platform, resulting in unpredictable/asymmetrical behavior when multiple platforms are combined in the same network. This paper describes in detail the challenges related to multi-platform MAC development, and experimentally quantifies how the above issues impact the MAC protocol performance when running MAC protocols on multiple radio chips. Finally, an overall methodology is proposed to avoid the previously mentioned cross-platform compatibility issues. (C) 2018 Elsevier B.V. All rights reserved

    A dynamic distributed multi-channel TDMA slot management protocol for ad hoc networks

    Get PDF
    With the emergence of new technologies and standards for wireless communications and an increase in application and user requirements, the number and density of deployed wireless ad hoc networks is increasing. For deterministic ad hoc networks, Time-Division Multiple Access (TDMA) is a popular medium access scheme, with many distributed TDMA scheduling algorithms being proposed. However, with increasing traffic demands and the number of wireless devices, proposed protocols are facing scalability issues. Besides, these protocols are achieving suboptimal spatial spectrum reuse as a result of the unsolved exposed node problem. Due to a shortage of available spectrum, a shift from fixed spectrum allocation to more dynamic spectrum sharing is anticipated. For dynamic spectrum sharing, improved distributed scheduling protocols are needed to increase spectral efficiency and support the coexistence of multiple co-located networks. Hence, in this paper, we propose a dynamic distributed multi-channel TDMA (DDMC-TDMA) slot management protocol based on control messages exchanged between one-hop network neighbors and execution of slot allocation and removal procedures between sender and receiver nodes. DDMC-TDMA is a topology-agnostic slot management protocol suitable for large-scale and high-density ad hoc networks. The performance of DDMC-TDMA has been evaluated for various topologies and scenarios in the ns-3 simulator. Simulation results indicate that DDMC-TDMA offers near-optimal spectrum utilization by solving both hidden and exposed node problems. Moreover, it proves to be a highly scalable protocol, showing no performance degradation for large-scale and high-density networks and achieving coexistence with unknown wireless networks operating in the same wireless domain

    Deep learning-based spectrum prediction collision avoidance for hybrid wireless environments

    Get PDF
    With a growing number of connected devices relying on the Industrial, Scientific, and Medical radio bands for communication, spectrum scarcity is one of the most important challenges currently and in the future. The existing collision avoidance techniques either apply a random back-off when spectrum collision is detected or assume that the knowledge about other nodes' spectrum occupation is known. While these solutions have shown to perform reasonably well in intra-Radio Access Technology environments, they can fail if they are deployed in dense multi-technology environments as they are unable to address the inter-Radio Access Technology interference. In this paper, we present Spectrum Prediction Collision Avoidance (SPCA): an algorithm that can predict the behavior of other surrounding networks, by using supervised deep learning; and adapt its behavior to increase the overall throughput of both its own Multiple Frequencies Time Division Multiple Access network as well as that of the other surrounding networks. We use Convolutional Neural Network (CNN) that predicts the spectrum usage of the other neighboring networks. Through extensive simulations, we show that the SPCA is able to reduce the number of collisions from 50% to 11%, which is 4.5 times lower than the regular Multiple Frequencies Time Division Multiple Access (MF-TDMA) approach. In comparison with an Exponentially Weighted Moving Average (EWMA) scheduler, SPCA reduces the number of collisions from 29% to 11%, which is a factor 2.5 lower

    SCATTER PHY : an open source physical layer for the DARPA spectrum collaboration challenge

    Get PDF
    DARPA, the Defense Advanced Research Projects Agency from the United States, has started the Spectrum Collaboration Challenge with the aim to encourage research and development of coexistence and collaboration techniques of heterogeneous networks in the same wireless spectrum bands. Team SCATTER has been participating in the challenge since its beginning, back in 2016. SCATTER's open-source software defined physical layer (SCATTER PHY) has been developed as a standalone application, with the ability to communicate with higher layers through a set of well defined messages (created with Google's Protocol buffers) and that exchanged over a ZeroMQ bus. This approach allows upper layers to access it remotely or locally and change all parameters in real time through the control messages. SCATTER PHY runs on top of USRP based software defined radio devices (i.e., devices from Ettus or National Instruments) to send and receive wireless signals. It is a highly optimized and real-time configurable SDR based PHY layer that can be used for the research and development of novel intelligent spectrum sharing schemes and algorithms. The main objective of making SCATTER PHY available to the research and development community is to provide a solution that can be used out of the box to devise disruptive algorithms and techniques to optimize the sub-optimal use of the radio spectrum that exists today. This way, researchers and developers can mainly focus their attention on the development of smarter (i.e., intelligent algorithms and techniques) spectrum sharing approaches. Therefore, in this paper, we describe the design and main features of SCATTER PHY and showcase several experiments performed to assess the effectiveness and performance of the proposed PHY layer

    An AI-based incumbent protection system for collaborative intelligent radio networks

    Get PDF
    Since the early days of wireless communication, wireless spectrum has been allocated according to a static frequency plan, whereby most of the spectrum is licensed for exclusive use by specific services or radio technologies. While some spectrum bands are overcrowded, many other bands are heavily underutilized. As a result, there is a shortage of available spectrum to deploy emerging technologies that require high demands on data like 5G. Several global efforts address this problem by providing multi-tier spectrum sharing frameworks, for example, the Citizens Broadband Radio Service (CBRS) and Licensed Shared Access (LSA) models, to increase spectrum reuse. In these frameworks, the incumbent (i.e., the technology that used the spectrum exclusively in the past) has to be protected against service disruptions caused by the transmissions of the new technologies that start using the same spectrum. However, these approaches suffer from two main problems. First, spectrum re-allocation to new uses is a slow process that may take years. Second, they do not scale fast since it requires a centralized infrastructure to protect the incumbent and coordinate and grant access to the shared spectrum. As a solution, the Spectrum Collaboration Challenge (SC2) has shown that the collaborative intelligent radio networks (CIRNs) -- artificial intelligence (AI)-based autonomous wireless networks that collaborate -- can share and reuse spectrum efficiently without any coordination and with the guarantee of incumbent protection. In this article, we present the architectural design and the experimental validation of an incumbent protection system for the next generation of spectrum sharing frameworks. The proposed system is a two-step AI-based algorithm that recognizes, learns, and proactively predicts the incumbent's transmission pattern with an accuracy above 95 percent in near real time (less than 300 ms). The proposed algorithm was validated in Colosseum, the RF channel emulator built for the SC2 competition, using up to two incumbents simultaneously with different transmission patterns and sharing spectrum with up to five additional CIRNs

    The CODYSUN approach : a novel distributed paradigm for dynamic spectrum sharing in satellite communications

    No full text
    With a constant increase in the number of deployed satellites, it is expected that the current fixed spectrum allocation in satellite communications (SATCOM) will migrate towards more dynamic and flexible spectrum sharing rules. This migration is accelerated due to the introduction of new terrestrial services in bands used by satellite services. Therefore, it is important to design dynamic spectrum sharing (DSS) solutions that can maximize spectrum utilization and support coexistence between a high number of satellite and terrestrial networks operating in the same spectrum bands. Several DSS solutions for SATCOM exist, however, they are mainly centralized solutions and might lead to scalability issues with increasing satellite density. This paper describes two distributed DSS techniques for efficient spectrum sharing across multiple satellite systems (geostationary and non-geostationary satellites with earth stations in motion) and terrestrial networks, with a focus on increasing spectrum utilization and minimizing the impact of interference between satellite and terrestrial segments. Two relevant SATCOM use cases have been selected for dynamic spectrum sharing: the opportunistic sharing of satellite and terrestrial systems in (i) downlink Ka-band and (ii) uplink Ka-band. For the two selected use cases, the performance of proposed DSS techniques has been analyzed and compared to static spectrum allocation. Notable performance gains have been obtained

    Collaborative flow control in the DARPA Spectrum Collaboration Challenge

    No full text
    Wireless network technologies are becoming more and more popular. Because of this, important parts of the wireless spectrum become overloaded. Static spectrum allocation, which has been the norm for decades, is not suitable anymore. To maintain the high demand for spectrum and the continuous development of new wireless technologies, there is a need for an intelligent, dynamic spectrum allocation mechanism, where different network technologies collaboratively optimize the spectrum usage. New wireless network paradigms, such as Neutral Host Networks (NHNs) and private 5G, require a smart, spectrum-footprint-aware flow control algorithm to overcome the spectrum scarcity in collaborative way. This article presents a strategy, vision and flow control mechanism to implement collaboration in a Quality of Service (QoS)-driven way. The solution in this article is based on policies which may activate depending on its current and neighbor's network states. Through a flow ordering and selection strategy, these policies optimize the spectrum footprint, based on the performance and QoS-requirements of the own and surrounding networks. The proposed algorithm is tested extensively and validated on a large scale during the DARPA Spectrum Collaboration Challenge (SC2) competition. The results of the SC2 final event and intermediate scrimmages showed that the proposed approach increased the score, indicating increased inter-network collaboration was achieved
    corecore