28 research outputs found

    Preparatory Effects of Distractor Suppression: Evidence from Visual Cortex

    Get PDF
    Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD) signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3). In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene

    Fearful Faces do Not Lead to Faster Attentional Deployment in Individuals with Elevated Psychopathic Traits

    Get PDF
    In the current study, a gaze-cueing experiment (similar to Dawel et al. 2015) was conducted in which the predictivity of a gaze-cue was manipulated (non-predictive vs highly predictive). This was done to assess the degree to which individuals with elevated psychopathic traits can use contextual information (i.e., the predictivity of the cue). Psychopathic traits were measured with the Self-Report Psychopathy Scale-Short Form (SRP-SF) in a mixed sample (undergraduate students and community members). Results showed no group difference in reaction times between high and non-predictive cueing blocks, suggesting that individuals with elevated psychopathic traits can indeed use contextual information when it is relevant. In addition, we observed that fearful facial expressions did not lead to a change in reaction times in individuals with elevated psychopathic traits, whereas individuals with low psychopathic traits showed speeded responses when confronted with a fearful face, compared to a neutral face. This suggests that fearful faces do not lead to faster attentional deployment in individuals with elevated psychopathic traits

    Mixed signals: The effect of conflicting reward- and goal-driven biases on selective attention

    Get PDF
    © 2017, The Author(s). Attentional selection depends on the interaction between exogenous (stimulus-driven), endogenous (goal-driven), and selection history (experience-driven) factors. While endogenous and exogenous biases have been widely investigated, less is known about their interplay with value-driven attention. The present study investigated the interaction between reward-history and goal-driven biases on perceptual sensitivity (d’) and response time (RT) in a modified cueing paradigm presenting two coloured cues, followed by sinusoidal gratings. Participants responded to the orientation of one of these gratings. In Experiment 1, one cue signalled reward availability but was otherwise task irrelevant. In Experiment 2, the same cue signalled reward, and indicated the target’s most likely location at the opposite side of the display. This design introduced a conflict between reward-driven biases attracting attention and goal-driven biases directing it away. Attentional effects were examined comparing trials in which cue and target appeared at the same versus opposite locations. Two interstimulus interval (ISI) levels were used to probe the time course of attentional effects. Experiment 1 showed performance benefits at the location of the reward-signalling cue and costs at the opposite for both ISIs, indicating value-driven capture. Experiment 2 showed performance benefits only for the long ISI when the target was at the opposite to the reward-associated cue. At the short ISI, only performance costs were observed. These results reveal the time course of these biases, indicating that reward-driven effects influence attention early but can be overcome later by goal-driven control. This suggests that reward-driven biases are integrated as attentional priorities, just as exogenous and endogenous factors.This research was supported by an ERC advanced grant [ERC-2012-AdG–323413 Jan Theeuwes

    Distractors associated with reward break through the focus of attention

    Get PDF
    In the present study, we investigated the conditions in which rewarded distractors have the ability to capture attention, even when attention is directed toward the target location. Experiment 1 showed that when the probability of obtaining reward was high, all salient distractors captured attention, even when they were not associated with reward. This effect may have been caused by participants suboptimally using the 100%-valid endogenous location cue. Experiment 2 confirmed this result by showing that salient distractors did not capture attention in a block in which no reward was expected. In Experiment 3, the probability of the presence of a distractor was high, but it only signaled reward availability on a low number of trials. The results showed that those very infrequent distractors that signaled reward captured attention, whereas the distractors (both frequent and infrequent ones) not associated with reward were simply ignored. The latter experiment indicates that even when attention is directed to a location in space, stimuli associated with reward break through the focus of attention, but equally salient stimuli not associated with reward do not

    Shifting Attention within Memory Representations Involves Early Visual Areas

    Get PDF
    Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings

    Reward can modulate attentional capture, independent of top-down set

    Get PDF
    © 2015, The Author(s). The traditional distinction between exogenous and endogenous attentional control has recently been enriched with an additional mode of control, termed “selection history.” Recent findings have indicated, for instance, that previously rewarded or punished stimuli capture more attention than their physical attributes would predict. As such, the value that is associated with certain stimuli modulates attentional capture. This particular influence has also been shown for endogenous attention. Although recent leads have emerged, elucidating the influences of reward on exogenous and endogenous attention, it remains unclear to what extent exogenous attention is modulated by reward when endogenous attention is already deployed. We used a Posner cueing task in which exogenous and endogenous cues were presented to guide attention. Crucially, the exogenous cue also indicated the reward value. That is, the color of the exogenous cue indicated how much reward could be obtained on a given trial. The results showed main effects of endogenous and exogenous attention (i.e., speeded reaction times when either cue was valid, as compared to when it was invalid). Crucially, an interaction between exogenous cue validity and reward level was observed, indicating that reward-based associative-learning processes rapidly influence attentional capture, even when endogenous attention has been actively deployed.This research was supported by an ERC advanced grant (No. ERC-2012-AdG-323413 to J.T.)

    Direct and Indirect Mechanisms of Value-Driven Attentional Guidance

    No full text

    Value-driven effects on perceptual averaging

    No full text
    Perceptual averaging refers to a strategy of encoding the statistical properties of entire sets of objects rather than encoding individual object properties, potentially circumventing the visual system’s strict capacity limitations. Prior work has shown that such average representations of set properties, such as its mean size, can be modulated by top-down and bottom-up attention. However, it is unclear to what extent attentional biases through selection history, in the form of value-driven attentional capture, influences this type of summary statistical representation. To investigate, we conducted two experiments in which participants estimated the mean size of a set of heterogeneously sized circles while a previously rewarded color singleton was part of the set. In Experiment 1, all circles were gray, except either the smallest or the largest circle, which was presented in a color previously associated with a reward. When the largest circle in the set was associated with the highest value (as a proxy of selection history), we observed the largest biases, such that perceived mean size scaled linearly with the increasing value of the attended color singleton. In Experiment 2, we introduced a dual-task component in the form of an attentional search task to ensure that the observed bias of reward on perceptual averaging was not fully explained by focusing attention solely on the reward-signaling color singleton. Collectively, findings support the proposal that selection history, like bottom-up and top-down attention, influences perceptual averaging, and that this happens in a flexible manner proportional to the extent to which attention is captured
    corecore