23 research outputs found

    Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data

    Get PDF
    Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus two-allele Wright-Fisher process, involving up to three simultaneous populations. Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites, predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including expansions, contractions, migrations, and admixture. As applications, we model human expansion out of Africa and the settlement of the New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by the Environmental Genome Project. We also combine our demographic model with a previously estimated distribution of selective effects among newly arising amino acid mutations to accurately predict the frequency spectrum of nonsynonymous variants across three continental populations (YRI, CHB, CEU).Comment: 17 pages, 4 figures, supporting information included with sourc

    Sensory Experience Differentially Modulates the mRNA Expression of the Polysialyltransferases ST8SiaII and ST8SiaIV in Postnatal Mouse Visual Cortex

    Get PDF
    Polysialic acid (PSA) is a unique carbohydrate composed of a linear homopolymer of α-2,8 linked sialic acid, and is mainly attached to the fifth immunoglobulin-like domain of the neural cell adhesion molecule (NCAM) in vertebrate neural system. In the brain, PSA is exclusively synthesized by the two polysialyltransferases ST8SiaII (also known as STX) and ST8SiaIV (also known as PST). By modulating adhesive property of NCAM, PSA plays a critical role in several neural development processes such as cell migration, neurite outgrowth, axon pathfinding, synaptogenesis and activity-dependent plasticity. The expression of PSA is temporally and spatially regulated during neural development and a tight regulation of PSA expression is essential to its biological function. In mouse visual cortex, PSA is downregulated following eye opening and its decrease allows the maturation of GABAergic synapses and the opening of the critical period for ocular dominance plasticity. Relatively little is known about how PSA levels are regulated by sensory experience and neuronal activity. Here, we demonstrate that while both ST8SiaII and ST8SiaIV mRNA levels decrease around the time of eye opening in mouse visual cortex, only ST8SiaII mRNA level reduction is regulated by sensory experience. Using an organotypic culture system from mouse visual cortex, we further show that ST8SiaII gene expression is regulated by spiking activity and NMDA-mediated excitation. Further, we show that both ST8SiaII and ST8SiaIV mRNA levels are positively regulated by PKC-mediated signaling. Therefore, sensory experience-dependent ST8SiaII gene expression regulates PSA levels in postnatal visual cortex, thus acting as molecular link between visual activity and PSA expression

    Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence.

    Get PDF
    Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation

    Hippocampal - diencephalic - cingulate networks for memory and emotion: An anatomical guide

    Get PDF
    This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez’s initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal–diencephalic–cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior–posterior plane of the hippocampus

    Clinical and serological associations with anti-RNA polymerase antibodies in systemic sclerosis

    No full text
    There are three classes of RNA polymerase enzyme (RNAPs I, II and III). In systemic sclerosis (SSc), three main groups of anti-RNAP sera have been characterized by radioimmunoprecipitation techniques: anti-RNAP I/III sera, anti-RNAP I/II/III sera, and a group precipitating both RNAP II and topoisomerase I (topo I). Some sera in this third group precipitate the phosphorylated (IIO) form of RNAP II in the absence of the unphosphorylated (IIA) form. Certain other antinuclear antibodies (ANA) have also been detected in anti-RNAP IIO/IIA/topo I and anti-RNAP IIO/topo I sera. In the present study of 155 SSc patients, clinical features of individuals from each of these antibody groups were assessed and compared with those of patients from other autoantibody-defined groups. The anti-RNAP I/II/III antibody specificity was closely associated with the presence of diffuse cutaneous SSc (dc-SSc) (77.8%; cf. remaining group, 12.4%; P < 0.001; relative risk (RR) 6.3). Patients with anti-RNAP I/III antibodies also had an increased incidence of dc-SSc, but this was not significant (42.9%; cf. remainder, 15.7%). Anti-RNAP+ patients had a significantly increased incidence of renal involvement (29.0%, cf. remainder, 11.3%; P < 0.05; RR 2.6), with 40% of anti-RNAP I/II/III patients having renal disease. Meanwhile, the presence of anti-centromere antibodies (ACA) was associated with limited cutaneous SSc (lc-SSc) (100.0%; cf. remainder, 75.3%; P < 0.005), together with reduced incidences of both renal disease (2.4%, cf. remainder, 22.1%: P < 0.01) and pulmonary fibrosis (21.4%, cf. remainder, 52.3%; P < 0.005; RR 1.9). Anti-topo I antibodies were associated with the presence of pulmonary fibrosis (69.7%; cf. remainder, 32.6%; P < 0.001; RR 2.1). A majority of anti-topo I sera were from lc-SSc patients, regardless of whether anti-topo I antibodies occurred alone (75.0%) or together with anti-RNAP IIO + IIA antibodies (75.0%), and this was similar to the remainder (86.5%; NS). However, when anti-topo I+ patients were compared with the ACA group, and then with all anti-RNAP I+ patients (37.5% lc-SSc), significant differences were found in the occurrence of dc- versus lc-SSc (P < 0.005 and P < 0.05, respectively). In conclusion, these results confirm that there are three main groups of SSc sera, each characterized by the presence of a mutually exclusive SSc-specific autoantibody (ACA, anti-topo I or anti-RNAP I), and distinguished by patterns of cutaneous involvement and specific clinical features. It appears that, in each of the three groups of SSc patients, distinct pathological processes are occurring, which are responsible for the characteristic symptoms, for the modification of particular autoantigens and, consequently, for the production of particular autoantibodies. Based on these data, together with our previous results, it is further hypothesized that anti-RNAP II antibodies may be produced in the context of two different immune response pathways
    corecore