18 research outputs found

    Volumetric performance capture from minimal camera viewpoints

    Get PDF
    We present a convolutional autoencoder that enables high fidelity volumetric reconstructions of human performance to be captured from multi-view video comprising only a small set of camera views. Our method yields similar end-to-end reconstruction error to that of a probabilistic visual hull computed using significantly more (double or more) viewpoints. We use a deep prior implicitly learned by the autoencoder trained over a dataset of view-ablated multi-view video footage of a wide range of subjects and actions. This opens up the possibility of high-end volumetric performance capture in on-set and prosumer scenarios where time or cost prohibit a high witness camera count

    General Automatic Human Shape and Motion Capture Using Volumetric Contour Cues

    Get PDF
    Markerless motion capture algorithms require a 3D body with properly personalized skeleton dimension and/or body shape and appearance to successfully track a person. Unfortunately, many tracking methods consider model personalization a different problem and use manual or semi-automatic model initialization, which greatly reduces applicability. In this paper, we propose a fully automatic algorithm that jointly creates a rigged actor model commonly used for animation - skeleton, volumetric shape, appearance, and optionally a body surface - and estimates the actor's motion from multi-view video input only. The approach is rigorously designed to work on footage of general outdoor scenes recorded with very few cameras and without background subtraction. Our method uses a new image formation model with analytic visibility and analytically differentiable alignment energy. For reconstruction, 3D body shape is approximated as Gaussian density field. For pose and shape estimation, we minimize a new edge-based alignment energy inspired by volume raycasting in an absorbing medium. We further propose a new statistical human body model that represents the body surface, volumetric Gaussian density, as well as variability in skeleton shape. Given any multi-view sequence, our method jointly optimizes the pose and shape parameters of this model fully automatically in a spatiotemporal way

    Using points at infinity for parameter decoupling in camera calibration

    No full text

    Using points at infinity for parameter decoupling in camera calibration

    No full text

    Estimating athlete pose from monocular tv sports footage

    No full text
    © Springer International Publishing Switzerland 2014.Human pose estimation from monocular video streams is a challenging problem. Much of the work on this problem has focused on developing inference algorithms and probabilistic prior models based on learned measurements. Such algorithms face challenges in generalisation beyond the learned dataset.We propose an interactive model-based generative approach for estimating the human pose from uncalibratedmonocular video in unconstrained sportsTVfootage. Belief propagation over a spatio-temporal graph of candidate body part hypotheses is used to estimate a temporally consistent pose between user-defined keyframe constraints. Experimental results show that the proposed generative pose estimation framework is capable of estimating pose even in very challenging unconstrained scenarios

    Calibration of a zooming camera using the Normalized Image of the Absolute Conic

    No full text

    Helmholtz stereopsis on rough and strongly textured surfaces

    Get PDF
    Helmholtz Stereopsis (HS) has recently been explored as a promising technique for capturing shape of objects with unknown reflectance. So far, it has been widely applied to objects of smooth geometry and piecewise uniform Bidirectional Reflectance Distribution Function (BRDF). Moreover, for nonconvex surfaces the inter-reflect ion effects have been completely neglected. We extend the method to surfaces which exhibit strong texture, nontrivial geometry and are possibly nonconvex. The problem associated with these surface features is that Helmholtz reciprocity is apparently violated when point-based measurements are used independently to establish the matching constraint as in the standard HS implementation. We argue that the problem is avoided by computing radiance measurements on image regions corresponding exactly to projections of the same surface point neighbourhood with appropriate scale. The experimental results demonstrate the success of the novel method proposed on real objects
    corecore