11 research outputs found

    Usefulness of NT-pro BNP monitoring to identify echocardiographic responders following cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) improves left ventricular (LV) volumes, mitral regurgitation (MR) severity and symptoms of patients with heart failure (HF). However, ≥ 30% of patients have no significant clinical or echocardiographic improvement following CRT. Reverse remodeling after CRT correlates with improved clinical outcomes. We hypothesized that in NT-pro BNP monitoring is accurate to identify responders following CRT.</p> <p>Methods</p> <p>42 consecutive patients (mean age 66 ± 12 years, male 68%) with HF undergoing CRT were prospectively enrolled. Responders at follow-up were defined by echocardiography (decrease in LV end systolic volume ≥ 15%). Echocardiography and NT-pro BNP measurement were performed at baseline and repeated 3 to 6 month after CRT.</p> <p>Results</p> <p>There was no significant difference between responders (n = 29, 69%) and non-responders (n = 13, 31%) regarding baseline NT-pro BNP level. Responders had significantly higher decrease in NT-pro BNP levels during follow-up than non-responders (absolute: -1428 ± 1333 pg.ml<sup>-1 </sup>vs. -61 ± 959 pg.ml<sup>-1</sup>, p = 0.002; relative: -45 ± 28% vs. 2 ± 28%, p < 0.0001). A decrease of ≥ 15% in NT-pro BNP 3–6 months after CRT identifies echocardiographic responders with a sensitivity of 90% and a specificity of 77%.</p> <p>Conclusion</p> <p>NT-pro BNP monitoring can accurately identify echocardiographic responders after CRT.</p

    The relationship of myocardial contraction and electrical excitation—the correlation between scintigraphic phase image analysis and electrophysiologic mapping

    Get PDF
    Phase imaging derived from equilibrium radionuclide angiography presents the ventricular contraction sequence. It has been widely but only indirectly correlated with the sequence of electrical myocardial activation. We sought to determine the specific relationship between the sequence of phase progression and the sequence of myocardial activation, contraction and conduction, in order to document a noninvasive method that could monitor both. In 7 normal and 9 infarcted dogs, the sequence of phase angle was correlated with the epicardial activation map in 126 episodes of sinus rhythm and pacing from three ventricular sites. In each episode, the site of earliest phase angle was identical to the focus of initial epicardial activation. Similarly, the serial contraction pattern by phase image analysis matched the electrical epicardial activation sequence completely or demonstrated good agreement in approximately 85% of pacing episodes, without differences between normal or infarct groups. A noninvasive method to accurately determine the sequence of contraction may serve as a surrogate for the associated electrical activation sequence or be applied to identify their differences

    Atrioventricular and interventricular delay optimization in cardiac resynchronization therapy: physiological principles and overview of available methods

    Get PDF
    In this review, the physiological rationale for atrioventricular and interventricular delay optimization of cardiac resynchronization therapy is discussed including the influence of exercise and long-term cardiac resynchronization therapy. The broad spectrum of both invasive and non-invasive optimization methods is reviewed with critical appraisal of the literature. Although the spectrum of both invasive and non-invasive optimization methods is broad, no single method can be recommend for standard practice as large-scale studies using hard endpoints are lacking. Current efforts mainly investigate optimization during resting conditions; however, there is a need to develop automated algorithms to implement dynamic optimization in order to adapt to physiological alterations during exercise and after anatomical remodeling

    Computational Modeling for Cardiac Resynchronization Therapy

    Get PDF
    corecore