29 research outputs found

    Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU) and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells) impairs repair processes and exacerbates inflammation after airway injury.</p> <p>Methods</p> <p>C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA) on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation.</p> <p>Results</p> <p>BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell) senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated β-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation.</p> <p>Conclusions</p> <p>Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.</p

    cAMP Response Element Binding Protein Is Required for Differentiation of Respiratory Epithelium during Murine Development

    Get PDF
    The cAMP response element binding protein 1 (Creb1) transcription factor regulates cellular gene expression in response to elevated levels of intracellular cAMP. Creb1−/− fetal mice are phenotypically smaller than wildtype littermates, predominantly die in utero and do not survive after birth due to respiratory failure. We have further investigated the respiratory defect of Creb1−/− fetal mice during development. Lungs of Creb1−/− fetal mice were pale in colour and smaller than wildtype controls in proportion to their reduced body size. Creb1−/− lungs also did not mature morphologically beyond E16.5 with little or no expansion of airway luminal spaces, a phenotype also observed with the Creb1−/− lung on a Crem−/− genetic background. Creb1 was highly expressed throughout the lung at all stages examined, however activation of Creb1 was detected primarily in distal lung epithelium. Cell differentiation of E17.5 Creb1−/− lung distal epithelium was analysed by electron microscopy and showed markedly reduced numbers of type-I and type-II alveolar epithelial cells. Furthermore, immunomarkers for specific lineages of proximal epithelium including ciliated, non-ciliated (Clara), and neuroendocrine cells showed delayed onset of expression in the Creb1−/− lung. Finally, gene expression analyses of the E17.5 Creb1−/− lung using whole genome microarray and qPCR collectively identified respiratory marker gene profiles and provide potential novel Creb1-regulated genes. Together, these results demonstrate a crucial role for Creb1 activity for the development and differentiation of the conducting and distal lung epithelium

    Suppression of AP1 Transcription Factor Function in Keratinocyte Suppresses Differentiation

    Get PDF
    Our previous study shows that inhibiting activator protein one (AP1) transcription factor function in murine epidermis, using dominant-negative c-jun (TAM67), increases cell proliferation and delays differentiation. To understand the mechanism of action, we compare TAM67 impact in mouse epidermis and in cultured normal human keratinocytes. We show that TAM67 localizes in the nucleus where it forms TAM67 homodimers that competitively interact with AP1 transcription factor DNA binding sites to reduce endogenous jun and fos factor binding. Involucrin is a marker of keratinocyte differentiation that is expressed in the suprabasal epidermis and this expression requires AP1 factor interaction at the AP1-5 site in the promoter. TAM67 interacts competitively at this site to reduce involucrin expression. TAM67 also reduces endogenous c-jun, junB and junD mRNA and protein level. Studies with c-jun promoter suggest that this is due to reduced transcription of the c-jun gene. We propose that TAM67 suppresses keratinocyte differentiation by interfering with endogenous AP1 factor binding to regulator elements in differentiation-associated target genes, and by reducing endogenous c-jun factor expression

    The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii

    Get PDF

    Botrytis species on bulb crops

    No full text
    Abstract. A number of Botrytis species are pathogens of bulb crops. Botrytis squamosa (teleomorph=Botrytotinia squamosa) causal agent of botrytis leaf blight and B. allii the causal agent of botrytis neck rotare two of the most important fungal diseases of onion. The taxonomics of several of the neck rotpathogens of onion have been revised on the basis of recent molecular sequence analysis studies. B. allii,B. aclada, and B. byssoidea are now recognized as distinct species causing neck rot diseases of onion. B.cinerea is also pathogenic on onion, primarily causing botrytis brown stain on onion bulbs. B. tulipae, B.elliptica, and B. gladiolorum are important pathogens of flower bulbs and are the causal agents of leafblight in tulip, lily, and gladiolus, respectively. Leaf blight in the major flower bulb crops is called ‘fire’referring to the fire-like symptoms occurring on the leaves of flower bulb plants when epidemics occur inproduction fields. In both the onion and flower bulb production systems chemicals are still heavily reliedupon to control the major diseases, however, alternative disease management systems also are used andundoubtedly will become increasingly important in controlling the diseases. Infected plants and colonizedplant debris are considered important sources of inoculum for B. squamosa, B. tulipae, and B. elliptica,particularly when sclerotia are formed. Sclerotia of B. squamosa serve as the source of conidia, as well asapothecia producing ascospores, in onion production areas in New York. The primary inoculum sourcesof B. allii and B. gladiolorum are believed to be infested seed and infected corms, respectively
    corecore