61 research outputs found

    A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analyses of N-acetylcysteine (NAC) for preventing contrast-induced nephrotoxicity (CIN) have led to disparate conclusions. Here we examine and attempt to resolve the heterogeneity evident among these trials.</p> <p>Methods</p> <p>Two reviewers independently extracted and graded the data. Limiting studies to randomized, controlled trials with adequate outcome data yielded 22 reports with 2746 patients.</p> <p>Results</p> <p>Significant heterogeneity was detected among these trials (<it>I</it><sup>2 </sup>= 37%; <it>p </it>= 0.04). Meta-regression analysis failed to identify significant sources of heterogeneity. A modified L'AbbĂ© plot that substituted groupwise changes in serum creatinine for nephrotoxicity rates, followed by model-based, unsupervised clustering resolved trials into two distinct, significantly different (<it>p </it>< 0.0001) and homogeneous populations (<it>I</it><sup>2 </sup>= 0 and <it>p </it>> 0.5, for both). Cluster 1 studies (<it>n </it>= 18; 2445 patients) showed no benefit (relative risk (RR) = 0.87; 95% confidence interval (CI) 0.68–1.12, <it>p </it>= 0.28), while cluster 2 studies (<it>n </it>= 4; 301 patients) indicated that NAC was highly beneficial (RR = 0.15; 95% CI 0.07–0.33, <it>p </it>< 0.0001). Benefit in cluster 2 was unexpectedly associated with NAC-induced decreases in creatinine from baseline (<it>p </it>= 0.07). Cluster 2 studies were relatively early, small and of lower quality compared with cluster 1 studies (<it>p </it>= 0.01 for the three factors combined). Dialysis use across all studies (five control, eight treatment; <it>p </it>= 0.42) did not suggest that NAC is beneficial.</p> <p>Conclusion</p> <p>This meta-analysis does not support the efficacy of NAC to prevent CIN.</p

    Prevention of acute kidney injury and protection of renal function in the intensive care unit

    Get PDF
    Acute renal failure on the intensive care unit is associated with significant mortality and morbidity. To determine recommendations for the prevention of acute kidney injury (AKI), focusing on the role of potential preventative maneuvers including volume expansion, diuretics, use of inotropes, vasopressors/vasodilators, hormonal interventions, nutrition, and extracorporeal techniques. A systematic search of the literature was performed for studies using these potential protective agents in adult patients at risk for acute renal failure/kidney injury between 1966 and 2009. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, and use of potentially nephrotoxic drugs and radiocontrast media. Where possible the following endpoints were extracted: creatinine clearance, glomerular filtration rate, increase in serum creatinine, urine output, and markers of tubular injury. Clinical endpoints included the need for renal replacement therapy, length of stay, and mortality. Studies are graded according to the international Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) group system Several measures are recommended, though none carries grade 1A. We recommend prompt resuscitation of the circulation with special attention to providing adequate hydration whilst avoiding high-molecular-weight hydroxy-ethyl starch (HES) preparations, maintaining adequate blood pressure using vasopressors in vasodilatory shock. We suggest using vasopressors in vasodilatory hypotension, specific vasodilators under strict hemodynamic control, sodium bicarbonate for emergency procedures administering contrast media, and periprocedural hemofiltration in severe chronic renal insufficiency undergoing coronary intervention

    Analysis of battery current microcycles in autonomous renewable energy systems

    No full text
    Battery currents in autonomous renewable energy systems (RES) are generally predicted or measured in terms of mean values over intervals of 1 min or longer. As a result, battery charge-discharge cycles with periods less than the averaging period are ignored, and the actual battery ampere hour (A h) throughput and resulting battery wear may be seriously underestimated, leading to optimistic prediction of battery lifetime. This paper considers short charge-discharge cycles or microcycles, arising from the characteristics of autonomous renewable energy systems, including generators, regulators, loads, and load inverter. Simulation results are used to show that inverters operating directly from the battery can cause microcycles, resulting in significantly increased battery throughput. Initial experimental results of the effects of microcycles on battery capacity and charging characteristics, and the contributing processes, are discussed
    • 

    corecore