26 research outputs found
Respiratory maneuvers in echocardiography: a review of clinical applications
During echocardiographic examination, respiration induces cyclic physiological changes of intracardiac haemodynamics, causing normal variations of the right and left ventricle Doppler inflows and outflows and physiological variation of extracardiac flows. The respiration related hemodynamic variation in intra and extracardiac flows may be utilized in the echocardiography laboratory to aid diagnosis in different pathological states. Nevertheless, physiologic respiratory phases can cause excessive translational motion of cardiac structures, lowering 2D image quality and interfering with optimal Doppler interrogation of flows or tissue motion
Current therapy of granulomatosis with polyangiitis and microscopic polyangiitis: the role of rituximab.
Granulomatosis with polyangiitis and microscopic polyangiitis are anti-neutrophil cytoplasmic antibody-associated vasculitides (AAVs) that are prone to cycles of remission and relapse. The introduction of cytotoxic therapy has changed the prognosis for these diseases from typically fatal to manageable chronic illnesses with a relapsing course. Despite improvements in outcomes, recurrence of disease and drug-related toxicity continue to produce significant morbidity and mortality. Better understanding of the pathogenesis of AAV and the mechanism of action of cyclophosphamide has led to investigation of therapies that target B cells. Two randomized controlled trials have shown that rituximab is not inferior to cyclophosphamide for induction of remission in severe AAV, with no significant difference in the incidence of overall adverse events in rituximab- versus cyclophosphamide-treated patients. Data from ongoing clinical trials will determine the role of rituximab in the maintenance of remission
Mu Insertions Are Repaired by the Double-Strand Break Repair Pathway of Escherichia coli
Mu is both a transposable element and a temperate bacteriophage. During lytic growth, it amplifies its genome by replicative transposition. During infection, it integrates into the Escherichia coli chromosome through a mechanism not requiring extensive DNA replication. In the latter pathway, the transposition intermediate is repaired by transposase-mediated resecting of the 5β² flaps attached to the ends of the incoming Mu genome, followed by filling the remaining 5 bp gaps at each end of the Mu insertion. It is widely assumed that the gaps are repaired by a gap-filling host polymerase. Using the E. coli Keio Collection to screen for mutants defective in recovery of stable Mu insertions, we show in this study that the gaps are repaired by the machinery responsible for the repair of double-strand breaks in E. coliβthe replication restart proteins PriA-DnaT and homologous recombination proteins RecABC. We discuss alternate models for recombinational repair of the Mu gaps