5 research outputs found

    Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis.

    Get PDF
    Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda

    Diagnostic Accuracy of Molecular Amplification Tests for Human African Trypanosomiasis—Systematic Review

    Get PDF
    A range of molecular amplification techniques has been developed for the diagnosis of HAT, with polymerase chain reaction (PCR) at the forefront. As laboratory strengthening in endemic areas increases, it is expected that the applicability of molecular tests will increase. However, careful evaluation of these tests against the current reference standard, microscopy, must precede implementation. Therefore, we have investigated the published diagnostic accuracy of molecular amplification tests for HAT compared to microscopy for both initial diagnosis as well as for disease staging

    Preclinical Assessment of the Treatment of Second-Stage African Trypanosomiasis with Cordycepin and Deoxycoformycin

    Get PDF
    There is an urgent need to substitute the highly toxic arsenic compounds still in use for treatment of the encephalitic stage of African trypanosomiasis, a disease caused by infection with Trypanosoma brucei. We exploited the inability of trypanosomes to engage in de novo purine synthesis as a therapeutic target. Cordycepin was selected from a trypanocidal screen of a 2200-compound library. When administered together with the adenosine deaminase inhibitor deoxycoformycin, cordycepin cured mice inoculated with the human pathogenic subspecies T. brucei rhodesiense or T. brucei gambiense even after parasites had penetrated into the brain. Successful treatment was achieved by intraperitoneal, oral or subcutaneous administration of the compounds. Treatment with the doublet also diminished infection-induced cerebral inflammation. Cordycepin induced programmed cell death of the parasites. Although parasites grown in vitro with low doses of cordycepin gradually developed resistance, the resistant parasites lost virulence and showed no cross-resistance to trypanocidal drugs in clinical use. Our data strongly support testing cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT
    corecore