7 research outputs found

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table

    Human immunodeficiency virus type I-specific CD8+ T cell subset abnormalities in chronic infection persist through effective antiretroviral therapy

    Get PDF
    Background: Effective highly active antiretroviral therapy (HAART) reduces human immunodeficiency virus (HIV) replication, restores CD4 +T lymphocyte counts and greatly reduces the incidence of opportunistic infections. While this demonstrates improved generalized immune function, rapid rebound to pre-treatment viral replication levels following treatment interruption indicates little improvement in immune control of HIV replication. The extent to which HAART can normalize HIV-specific CD8 +T cell function over time in individuals with chronic infection remains an important unresolved issue. In this study, we evaluated the magnitude, general specificity and character of HIV specific CD8 +T cell responses at four time points across 2-9 years in 2 groups of chronically infected individuals separated on the basis of either effective antiretroviral suppression or ongoing replication of HIV.Methods: Peripheral blood mononuclear cells (PBMC) were stimulated with overlapping 15mer peptides spanning HIV Gag, Pol, Env and Nef proteins. Cells producing interferon-γ (IFN-γ) or interleukin-2 (IL-2) were enumerated by ELISPOT and phenotyped by flow cytometry.Results and Conclusions: The magnitude of the HIV-specific CD8 +T cell response ranged from < .01 to approximately 1.0% of PBMC and was significantly greater in the group with detectable viral replication. Stronger responses reflected higher numbers of CD8 +CD45RA -effector memory cells producing IFN-γ, but not IL-2. Magnitude, general specificity and character of the HIV-specific CD8 +T cell response changed little over the study period. While antiretroviral suppression of HIV in chronic infection reduces HIV-specific CD8 +T cell response magnitude in the short term, it had no significant effect on response character over periods up to 9 years

    Linear Fidelity in Quantification of Anti-Viral CD8+ T Cells

    Get PDF
    Enumeration of anti-viral CD8+ T cells to make comparisons between mice, viruses and vaccines is a frequently used approach, but controversy persists as to the most appropriate methods. Use of peptide-MHC tetramers (or variants) and intracellular staining for cytokines, in particular IFNγ, after a short ex vivo stimulation are now common, as are a variety of cytotoxicity assays, but few direct comparisons have been made. It has been argued that use of tetramers leads to the counting of non-functional T cells and that measurement of single cytokines will fail to identify cells with alternative functions. Further, the linear range of these methods has not been tested and this is required to give confidence that relative quantifications can be compared across samples. Here we show for two acute virus infections and CD8+ T cells activated in vitro that DimerX (a tetramer variant) and intracellular staining for IFNγ, alone or in combination with CD107 to detect degranulation, gave comparable results at the peak of the response. Importantly, these methods were highly linear over nearly two orders of magnitude. In contrast, in vitro and in vivo assays for cytotoxicity were not linear, suffering from high background killing, plateaus in maximal killing and substantial underestimation of differences in magnitude of responses

    Oncological Applications of Positron Emission Tomography with Fluorine-18 Fluorodeoxyglucose

    Full text link
    Positron emission tomography (PET) is now primarily used in oncological indication owing to the successful application of fluorine-18 fluorodeoxyglucose (FDG) in an increasing number of clinical indications at different stages of diagnosis, and for staging and follow-up. This review first considers the biological characteristics of FDG and then discusses methodological considerations regarding its use. Clinical indications are considered, and the results achieved in respect of various organs and tumour types are reviewed in depth. The review concludes with a brief consideration of the ways in which clinical PET might be improved

    Ablagerungskrankheiten körpereigener Stoffwechselprodukte

    No full text
    corecore