94 research outputs found

    ARPES: A probe of electronic correlations

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental Techniques", edited by A. Avella and F. Mancini, Springer Series in Solid-State Sciences (2013). A high-resolution version can be found at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf. arXiv admin note: text overlap with arXiv:cond-mat/0307085, arXiv:cond-mat/020850

    Strong Neurophilosophy and the Matter of Bat Consciousness: A case study

    Get PDF
    In “What is it like to be boring and myopic?” Kathleen Akins offers an interesting, empirically driven, argument for thinking that there is nothing that it is like to be a bat. She suggests that bats are “boring” in the sense that they are governed by behavioral scripts and simple, non-representational, control loops, and are best characterized as biological automatons. Her approach has been well received by philosophers sympathetic to empirically informed philosophy of mind. But, despite its influence, her work has not met with any critical appraisal. It is argued that a reconsideration of the empirical results shows that bats are not boring automatons, driven by short input-output loops, instincts, and reflexes. Grounds are provided for thinking that bats satisfy a range of philosophically and scientifically interesting elaborations of the general idea that consciousness is best understood in terms of representational functions. A more complete examination of bat sensory capabilities suggests there is something that it is like after all. The discussion of bats is also used to develop an objection to strongly neurophilosophical approaches to animal consciousness

    Osteochondral defects in the ankle: why painful?

    Get PDF
    Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone plate. The ankle joint has a high congruency. During loading, compressed cartilage forces its water into the microfractured subchondral bone, leading to a localized high increased flow and pressure of fluid in the subchondral bone. This will result in local osteolysis and can explain the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion, but is most probably caused by repetitive high fluid pressure during walking, which results in stimulation of the highly innervated subchondral bone underneath the cartilage defect. Understanding the natural history of osteochondral defects could lead to the development of strategies for preventing progressive joint damage

    High-resolution genome-wide allelotype analysis identifies loss of chromosome 14q as a recurrent genetic alteration in astrocytic tumours

    Get PDF
    Diffusely infiltrative astrocytic tumours are the most common neoplasms in the human brain. To localise putative tumour suppressor loci that are involved in low-grade astrocytomas, we performed high-resolution genome-wide allelotype analysis on 17 fibrillary astrocytomas. Non-random allelic losses were identified on chromosomal arms 10p (29%), 10q (29%), 14q (35%), 17p (53%), and 19q (29%), with their respective common regions of deletions delineated at 10p14-15.1, 10q25.1-qter, 14q212.2-qer, 17p11.2-pter and 19q12-13.4. These results suggest that alterations of these chromosomal regions play important roles in the development of astrocytoma. We also allelotyped 21 de novo glioblastoma multiforme with an aim to unveil genetic changes that are common to both types of astrocytic tumours. Non-random allelic losses were identified on 9p (67%), 10p (62%), 10q (76%), 13q (60%), 14q (50%), and 17p (65%). Allelic losses of 10p, 10q, 14q and 17p were common genetic alterations detectable in both fibrillary astrocytomas and glioblastoma multiforme. In addition, two common regions of deletions on chromosome 14 were mapped to 14q22.3-32.1 and 14q32.1-qter, suggesting the presence of two putative tumour suppressor genes. In conclusion, our comprehensive allelotype analysis has unveiled several critical tumour suppressor loci that are involved in the development of fibrillary astrocytomas and glioblastoma multiforme. Although these two types of brain tumours are believed to evolve from different genetic pathways, they do share some common genetic changes. Our results indicate that deletions of chromosome 14q is a recurrent genetic event in the development of astrocytoma and highlight the subchromosomal regions on this chromosome that are likely to contain putative tumour suppressor genes involved in the oncogenesis of astrocytic tumours
    corecore