49 research outputs found

    Contegra conduit for reconstruction of the right ventricular outflow tract: a review of published early and mid-time results

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The valved conduit Contegra (bovine jugular vein) has being implanted for more than 7 years in the right ventricular outflow tract and it is noted that the available reports have been mixed. The aim of this study is to review the reported evidence in the literature.</p> <p>Methods</p> <p>Search of the relevant literature for the primary endpoints of operative mortality and morbidity and secondary endpoints of follow-up haemodynamic performance including severe stenosis, regurgitation and need for reintervention are presented.</p> <p>Results</p> <p>We selected and analysed 17 series including 767 patients. Commonest indication was Fallot's tetralogy. Operative mortality was 2.6%. Operative morbidity was 13.9%. In follow-up, the incidence of intraconduit stenosis was 10.9% (incidence of stenosis for the 12 millimetre conduit was 83.3% in one series) and that of at least moderate regurgitation was 6.3%.</p> <p>The aspirin users had a stenosis incidence of 10.5% compared to the non-users had a stenosis incidence of 9.6%.</p> <p>Conclusion</p> <p>A dissent on the performance of the Contegra is discussed, while results are satisfactory in the majority of studies apart for the smallest conduits (12 and 14 millimetre), suggesting an association to compromised run-off. The role of aspirin as antithrombotic modulator remains controversial.</p

    Genetic and Computational Identification of a Conserved Bacterial Metabolic Module

    Get PDF
    We have experimentally and computationally defined a set of genes that form a conserved metabolic module in the α-proteobacterium Caulobacter crescentus and used this module to illustrate a schema for the propagation of pathway-level annotation across bacterial genera. Applying comprehensive forward and reverse genetic methods and genome-wide transcriptional analysis, we (1) confirmed the presence of genes involved in catabolism of the abundant environmental sugar myo-inositol, (2) defined an operon encoding an ABC-family myo-inositol transmembrane transporter, and (3) identified a novel myo-inositol regulator protein and cis-acting regulatory motif that control expression of genes in this metabolic module. Despite being encoded from non-contiguous loci on the C. crescentus chromosome, these myo-inositol catabolic enzymes and transporter proteins form a tightly linked functional group in a computationally inferred network of protein associations. Primary sequence comparison was not sufficient to confidently extend annotation of all components of this novel metabolic module to related bacterial genera. Consequently, we implemented the Graemlin multiple-network alignment algorithm to generate cross-species predictions of genes involved in myo-inositol transport and catabolism in other α-proteobacteria. Although the chromosomal organization of genes in this functional module varied between species, the upstream regions of genes in this aligned network were enriched for the same palindromic cis-regulatory motif identified experimentally in C. crescentus. Transposon disruption of the operon encoding the computationally predicted ABC myo-inositol transporter of Sinorhizobium meliloti abolished growth on myo-inositol as the sole carbon source, confirming our cross-genera functional prediction. Thus, we have defined regulatory, transport, and catabolic genes and a cis-acting regulatory sequence that form a conserved module required for myo-inositol metabolism in select α-proteobacteria. Moreover, this study describes a forward validation of gene-network alignment, and illustrates a strategy for reliably transferring pathway-level annotation across bacterial species

    Imunopatologia da dermatite de contato alérgica

    Full text link

    Therapeutic application of T regulatory cells in composite tissue allotransplantation

    Full text link

    Cell cycle regulator phosphorylation stimulates two distinct modes of binding at a chromosome replication origin

    No full text
    In Caulobacter crescentus, the global response regulator CtrA controls chromosome replication and determines the fate of two different cell progenies. Previous studies proposed that CtrA represses replication by binding to five sites, designated [a–e], in the replication origin. We show that phosphorylated CtrA binds sites [a–e] with 35- to 100–fold lower K(d) values than unphosphorylated CtrA. CtrA phosphorylation stimulates two distinct modes of binding to the replication origin. Phosphorylation stimulates weak intrinsic protein–protein cooperation between half-sites and does not stimulate CtrA–P binding unless protein–DNA contacts are made at both half-sites. CtrA phosphorylation also stimulates cooperative binding between complete sites [a] and [b]. However, binding to each of the other CtrA-binding sites [c], [d] and [e] is completely independent and suggests a modular organization of replication control by CtrA. We therefore propose a model where a phosphorelay targets separate biochemical activities inside the replication origin through both cooperative and independent CtrA-binding sites
    corecore