107 research outputs found
A RAC-GEF network critical for early intestinal tumourigenesis.
RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2-/- Vav3-/- Tiam1-/-), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease
Effect of pre-exposure use of hydroxychloroquine on COVID-19 mortality: a population-based cohort study in patients with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY platform.
BACKGROUND: Hydroxychloroquine has been shown to inhibit entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into epithelial cells in vitro, but clinical studies found no evidence of reduced mortality when treating patients with COVID-19. We aimed to evaluate the effectiveness of hydroxychloroquine for prevention of COVID-19 mortality, as opposed to treatment for the disease. METHODS: We did a prespecified observational, population-based cohort study using national primary care data and linked death registrations in the OpenSAFELY platform, which covers approximately 40% of the general population in England, UK. We included all adults aged 18 years and older registered with a general practice for 1 year or more on March 1, 2020. We used Cox regression to estimate the association between ongoing routine hydroxychloroquine use before the COVID-19 outbreak in England (considered as March 1, 2020) compared with non-users of hydroxychloroquine and risk of COVID-19 mortality among people with rheumatoid arthritis or systemic lupus erythematosus. Model adjustment was informed by a directed acyclic graph. FINDINGS: Between Sept 1, 2019, and March 1, 2020, of 194 637 people with rheumatoid arthritis or systemic lupus erythematosus, 30 569 (15·7%) received two or more prescriptions of hydroxychloroquine. Between March 1 and July 13, 2020, there were 547 COVID-19 deaths, 70 among hydroxychloroquine users. Estimated standardised cumulative COVID-19 mortality was 0·23% (95% CI 0·18 to 0·29) among users and 0·22% (0·20 to 0·25) among non-users; an absolute difference of 0·008% (-0·051 to 0·066). After accounting for age, sex, ethnicity, use of other immunosuppressive drugs, and geographical region, no association with COVID-19 mortality was observed (HR 1·03, 95% CI 0·80 to 1·33). We found no evidence of interactions with age or other immunosuppressive drugs. Quantitative bias analyses indicated that our observed associations were robust to missing information for additional biologic treatments for rheumatological disease. We observed similar associations with the negative control outcome of non-COVID-19 mortality. INTERPRETATION: We found no evidence of a difference in COVID-19 mortality among people who received hydroxychloroquine for treatment of rheumatological disease before the COVID-19 outbreak in England. Therefore, completion of randomised trials investigating pre-exposure prophylactic use of hydroxychloroquine for prevention of severe outcomes from COVID-19 are warranted. FUNDING: Medical Research Council
ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis
<p>Abstract</p> <p>Background</p> <p>Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of <it>Drosophila melanogaster</it>.</p> <p>Results</p> <p>Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis.</p> <p>Conclusions</p> <p>Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.</p
Trends, variation, and clinical characteristics of recipients of antiviral drugs and neutralising monoclonal antibodies for covid-19 in community settings: retrospective, descriptive cohort study of 23.4 million people in OpenSAFELY
Objective: To ascertain patient eligibility status and describe coverage of antiviral drugs and neutralising monoclonal antibodies (nMAB) as treatment for covid-19 in community settings in England.
Design: Retrospective, descriptive cohort study, approved by NHS England.
Setting: Routine clinical data from 23.4 million people linked to data on covid-19 infection and treatment, within the OpenSAFELY-TPP database.
Participants: Outpatients with covid-19 at high risk of severe outcomes.
Interventions: Nirmatrelvir/ritonavir (paxlovid), sotrovimab, molnupiravir, casirivimab/imdevimab, or remdesivir, used in the community by covid-19 medicine delivery units.
Results: 93 870 outpatients with covid-19 were identified between 11 December 2021 and 28 April 2022 to be at high risk of severe outcomes and therefore potentially eligible for antiviral or nMAB treatment (or both). Of these patients, 19 040 (20%) received treatment (sotrovimab, 9660 (51%); molnupiravir, 4620 (24%); paxlovid, 4680 (25%); casirivimab/imdevimab, 50 (<1%); and remdesivir, 30 (<1%)). The proportion of patients treated increased from 9% (190/2220) in the first week of treatment availability to 29% (460/1600) in the latest week. The proportion treated varied by high risk group, being lowest in those with liver disease (16%; 95% confidence interval 15% to 17%); by treatment type, with sotrovimab favoured over molnupiravir and paxlovid in all but three high risk groups (Down's syndrome (35%; 30% to 39%), rare neurological conditions (45%; 43% to 47%), and immune deficiencies (48%; 47% to 50%)); by age, ranging from ≥80 years (13%; 12% to 14%) to 50-59 years (23%; 22% to 23%); by ethnic group, ranging from black (11%; 10% to 12%) to white (21%; 21% to 21%); by NHS region, ranging from 13% (12% to 14%) in Yorkshire and the Humber to 25% (24% to 25%) in the East of England); and by deprivation level, ranging from 15% (14% to 15%) in the most deprived areas to 23% (23% to 24%) in the least deprived areas. Groups that also had lower coverage included unvaccinated patients (7%; 6% to 9%), those with dementia (6%; 5% to 7%), and care home residents (6%; 6% to 7%).
Conclusions: Using the OpenSAFELY platform, we were able to identify patients with covid-19 at high risk of severe outcomes who were potentially eligible to receive treatment and assess the coverage of these new treatments among these patients. In the context of a rapid deployment of a new service, the NHS analytical code used to determine eligibility could have been over-inclusive and some of the eligibility criteria not fully captured in healthcare data. However targeted activity might be needed to resolve apparent lower treatment coverage observed among certain groups, in particular (at present): different NHS regions, ethnic groups, people aged ≥80 years, those living in socioeconomically deprived areas, and care home residents
Anthrax Toxins Inhibit Neutrophil Signaling Pathways in Brain Endothelium and Contribute to the Pathogenesis of Meningitis
Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood.Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Gro alpha) and CXCL2 (Gro beta), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis.These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies
Genetic variation in a member of the laminin gene family affects variation in body composition in Drosophila and humans
<p>Abstract</p> <p>Background</p> <p>The objective of the present study was to map candidate loci influencing naturally occurring variation in triacylglycerol (TAG) storage using quantitative complementation procedures in <it>Drosophila melanogaster</it>. Based on our results from <it>Drosophila</it>, we performed a human population-based association study to investigate the effect of natural variation in <it>LAMA5 </it>gene on body composition in humans.</p> <p>Results</p> <p>We identified four candidate genes that contributed to differences in TAG storage between two strains of <it>D. melanogaster</it>, including <it>Laminin A </it>(<it>LanA</it>), which is a member of the α subfamily of laminin chains. We confirmed the effects of this gene using a viable <it>LanA </it>mutant and showed that female flies homozygous for the mutation had significantly lower TAG storage, body weight, and total protein content than control flies. <it>Drosophila LanA </it>is closely related to human <it>LAMA5 </it>gene, which maps to the well-replicated obesity-linkage region on chromosome 20q13.2-q13.3. We tested for association between three common single nucleotide polymorphisms (SNPs) in the human <it>LAMA5 </it>gene and variation in body composition and lipid profile traits in a cohort of unrelated women of European American (EA) and African American (AA) descent. In both ethnic groups, we found that SNP rs659822 was associated with weight (EA: <it>P </it>= 0.008; AA: <it>P </it>= 0.05) and lean mass (EA: <it>P= </it>0.003; AA: <it>P </it>= 0.03). We also found this SNP to be associated with height (<it>P </it>= 0.01), total fat mass (<it>P </it>= 0.01), and HDL-cholesterol (<it>P </it>= 0.003) but only in EA women. Finally, significant associations of SNP rs944895 with serum TAG levels (<it>P </it>= 0.02) and HDL-cholesterol (<it>P </it>= 0.03) were observed in AA women.</p> <p>Conclusion</p> <p>Our results suggest an evolutionarily conserved role of a member of the laminin gene family in contributing to variation in weight and body composition.</p
Comparative Transcriptional Profiling of Bacillus cereus Sensu Lato Strains during Growth in CO2-Bicarbonate and Aerobic Atmospheres
Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains.Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group--a pneumonia-causing B. cereus strain (G9241), an attenuated strain of B. anthracis (Sterne 34F(2)), and an avirulent B. cereus strain (10987)--during exponential growth in two distinct atmospheric environments: 14% CO(2)/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO(2) environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment.We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and highlights the importance of looking beyond differences in gene content in comparative genomics studies
Inhaled corticosteroid use and risk COVID-19 related death among 966,461 patients with COPD or asthma: an OpenSAFELY analysis
AbstractBackgroundEarly descriptions of the coronavirus outbreak showed a lower prevalence of asthma and COPD than was expected for people diagnosed with COVID-19, leading to speculation that inhaled corticosteroids (ICS) may protect against infection with SARS-CoV-2, and development of serious sequelae. We evaluated the association between ICS and COVID-19 related death using linked electronic health records in the UK.MethodsWe conducted cohort studies on two groups of people (COPD and asthma) using the OpenSAFELY platform to analyse data from primary care practices linked to national death registrations. People receiving an ICS were compared to those receiving alternative respiratory medications. Our primary outcome was COVID-19 related death.FindingsWe identified 148,588 people with COPD and 817,973 people with asthma receiving relevant respiratory medications in the four months prior to 01 March 2020. People with COPD receiving ICS were at a greater risk of COVID-19 related death compared to those receiving a long-acting beta agonist (LABA) and a long-acting muscarinic antagonist (LAMA) (adjusted HR = 1.38, 95% CI = 1.08 – 1.75). People with asthma receiving high dose ICS were at an increased risk of death compared to those receiving a short-acting beta agonist (SABA) only (adjusted HR = 1.52, 95%CI = 1.08 – 2.14); the adjusted HR for those receiving low-medium dose ICS was 1.10 (95% CI = 0.82 – 1.49). Quantitative bias analyses indicated that an unmeasured confounder of only moderate strength of association with exposure and outcome could explain the observed associations in both populations.InterpretationThese results do not support a major role of ICS in protecting against COVID-19 related deaths. Observed increased risks of COVID-19 related death among people with COPD and asthma receiving ICS can be plausibly explained by unmeasured confounding due to disease severity.FundingThis work was supported by the Medical Research Council MR/V015737/1.</jats:sec
Use of non-steroidal anti-inflammatory drugs and risk of death from COVID-19: an OpenSAFELY cohort analysis based on two cohorts.
OBJECTIVES: To assess the association between routinely prescribed non-steroidal anti-inflammatory drugs (NSAIDs) and deaths from COVID-19 using OpenSAFELY, a secure analytical platform. METHODS: We conducted two cohort studies from 1 March to 14 June 2020. Working on behalf of National Health Service England, we used routine clinical data in England linked to death data. In study 1, we identified people with an NSAID prescription in the last 3 years from the general population. In study 2, we identified people with rheumatoid arthritis/osteoarthritis. We defined exposure as current NSAID prescription within the 4 months before 1 March 2020. We used Cox regression to estimate HRs for COVID-19 related death in people currently prescribed NSAIDs, compared with those not currently prescribed NSAIDs, accounting for age, sex, comorbidities, other medications and geographical region. RESULTS: In study 1, we included 536 423 current NSAID users and 1 927 284 non-users in the general population. We observed no evidence of difference in risk of COVID-19 related death associated with current use (HR 0.96, 95% CI 0.80 to 1.14) in the multivariable-adjusted model. In study 2, we included 1 708 781 people with rheumatoid arthritis/osteoarthritis, of whom 175 495 (10%) were current NSAID users. In the multivariable-adjusted model, we observed a lower risk of COVID-19 related death (HR 0.78, 95% CI 0.64 to 0.94) associated with current use of NSAID versus non-use. CONCLUSIONS: We found no evidence of a harmful effect of routinely prescribed NSAIDs on COVID-19 related deaths. Risks of COVID-19 do not need to influence decisions about the routine therapeutic use of NSAIDs
- …