48 research outputs found

    Impact of combined 18F-FDG PET/CT in head and neck tumours

    Get PDF
    To compare the interobserver agreement and degree of confidence in anatomical localisation of lesions using 2-[fluorine-18]fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and 18F-FDG PET alone in patients with head and neck tumours. A prospective study of 24 patients (16 male, eight female, median age 59 years) with head and neck tumours was undertaken. 18F-FDG PET/CT was performed for staging purposes. 2D images were acquired over the head and neck area using a GE Discovery LS™ PET/CT scanner. 18F-FDG PET images were interpreted by three independent observers. The observers were asked to localise abnormal 18F-FDG activity to an anatomical territory and score the degree of confidence in localisation on a scale from 1 to 3 (1=exact region unknown; 2=probable; 3=definite). For all 18F-FDG-avid lesions, standardised uptake values (SUVs) were also calculated. After 3 weeks, the same exercise was carried out using 18F-FDG PET/CT images, where CT and fused volume data were made available to observers. The degree of interobserver agreement was measured in both instances. A total of six primary lesions with abnormal 18F-FDG uptake (SUV range 7.2–22) were identified on 18F-FDG PET alone and on 18F-FDG PET/CT. In all, 15 nonprimary tumour sites were identified with 18F-FDG PET only (SUV range 4.5–11.7), while 17 were identified on 18F-FDG PET/CT. Using 18F-FDG PET only, correct localisation was documented in three of six primary lesions, while 18F-FDG PET/CT correctly identified all primary sites. In nonprimary tumour sites, 18F-FDG PET/CT improved the degree of confidence in anatomical localisation by 51%. Interobserver agreement in assigning primary and nonprimary lesions to anatomical territories was moderate using 18F-FDG PET alone (kappa coefficients of 0.45 and 0.54, respectively), but almost perfect with 18F-FDG PET/CT (kappa coefficients of 0.90 and 0.93, respectively). We conclude that 18F-FDG PET/CT significantly increases interobserver agreement and confidence in disease localisation of 18F-FDG-avid lesions in patients with head and neck cancers

    Dutch home-based pre-reading intervention with children at familial risk of dyslexia

    Get PDF
    Children (5 and 6 years old, n = 30) at familial risk of dyslexia received a home-based intervention that focused on phoneme awareness and letter knowledge in the year prior to formal reading instruction. The children were compared to a no-training at-risk control group (n = 27), which was selected a year earlier. After training, we found a small effect on a composite score of phoneme awareness (d = 0.29) and a large effect on receptive letter knowledge (d = 0.88). In first grade, however, this did not result in beneficial effects for the experimental group in word reading and spelling. Results are compared to three former intervention studies in The Netherlands and comparable studies from Denmark and Australia

    Contemporary management of cancer of the oral cavity

    Get PDF
    Oral cancer represents a common entity comprising a third of all head and neck malignant tumors. The options for curative treatment of oral cavity cancer have not changed significantly in the last three decades; however, the work up, the approach to surveillance, and the options for reconstruction have evolved significantly. Because of the profound functional and cosmetic importance of the oral cavity, management of oral cavity cancers requires a thorough understanding of disease progression, approaches to management and options for reconstruction. The purpose of this review is to discuss the most current management options for oral cavity cancers

    Nodal spread of squamous cell carcinoma of the oral cavity detected with PET-tyrosine, MRI and CT

    No full text
    The uptake of L-1-[C-11]-tyrosine (TYR) in cervical lymph nodes of eleven patients with squamous-cell carcinoma (SCC) of the oral cavity was studied with PET to detect lymphogenic metastases. Methods: The TYR-PET results were compared with clinical, MRI, CT, histopathologic findings and historical data of patients studied with FDG. Sensitivity, specificity, accuracy and the positive and negative predictive values were calculated. Results: TYR-PET had sensitivity of 83% and a specificity of 95%, In contrast, the sensitivity and specificity for MRI were 33% and 96%, respectively. The sensitivity and specificity for CT were 55% and 91%, respectively, TYR-PET results compared favorably with FDG. Conclusion: With NR-PET, SCC metastases of the oral cavity can be visualized with high sensitivity and specificity, TYR-PET can be an additional tool for further evaluation of neck malignancies
    corecore