89 research outputs found

    Training pediatric health care providers in prevention of dental decay: results from a randomized controlled trial

    Get PDF
    Background: Physicians report willingness to provide preventive dental care, but optimal methods for their training and support in such procedures are not known. This study aimed to evaluate the effect of three forms of continuing medical education (CME) on provision of preventive dental services to Medicaid-enrolled children by medical personnel in primary care physician offices. Methods: Practice-based, randomized controlled trial. Setting: 1,400 pediatric and family physician practices in North Carolina providing care to an estimated 240,000 Medicaid-eligible children aged 0–3 years. Interventions: Group A practices (n = 39) received didactic training and course materials in oral health screening, referral, counseling and application of fluoride varnish. Group B practices (n = 41) received the same as Group A and were offered weekly conference calls providing advice and support. Group C practices (n = 41) received the same as Group B and were offered in-office visit providing hands-on advice and support. In all groups, physicians were reimbursed 3838–43 per preventive dental visit. Outcome measures were computed from reimbursement claims submitted to NC Division of Medical Assistance. Primary outcome measure: rate of preventive dental services provision per 100 well-child visits. Secondary outcome measure: % of practices providing 20 or more preventive dental visits. Results: 121 practices were randomized, and 107 provided data for analysis. Only one half of Group B and C practices took part in conference calls or in-office visits. Using intention-to-treat analysis, rates of preventive dental visits did not differ significantly among CME groups: GroupA = 9.4, GroupB = 12.9 and GroupC = 8.5 (P = 0.32). Twenty or more preventive dental visits were provided by 38–49% of practices in the three study groups (P = 0.64). Conclusion: A relatively high proportion of medical practices appear capable of adopting these preventive dental services within a one year period regardless of the methods used to train primary health care providers.Gary D Slade, R Gary Rozier, Leslie P Zeldin, and Peter A Margoli

    Introducing systems approaches

    Get PDF
    Systems Approaches to Managing Change brings together five systems approaches to managing complex issues, each having a proven track record of over 25 years. The five approaches are: System Dynamics (SD) developed originally in the late 1950s by Jay Forrester Viable Systems Model (VSM) developed originally in the late 1960s by Stafford Beer Strategic Options Development and Analysis (SODA: with cognitive mapping) developed originally in the 1970s by Colin Eden Soft Systems Methodology (SSM) developed originally in the 1970s by Peter Checkland Critical Systems Heuristics (CSH) developed originally in the late 1970s by Werner Ulrich

    Chapter 1: Introducing systems approaches

    Get PDF
    The five approaches covered in Systems Approaches to Making Change – System Dynamics (SD) Viable Systems Model (VSM), Strategic Options Development and Analysis (SODA: with cognitive mapping), Soft Systems Methodology (SSM), and Critical Systems Heuristics (CSH) – are introduced. The rationale for their inclusion is described based on their (i) common historic emergence in dealing with complex situations of change and uncertainty, (ii) shared potential and actual constructivist use of the systems idea, and (iii) pedigree of adaptability and versatility of tools in working with other approaches to making change

    Long-term outcome of chronic dialysis in children

    Get PDF
    As the prevalence of children on renal replacement therapy (RRT) increases world wide and such therapy comprises at least 2% of any national dialysis or transplant programme, it is essential that paediatric nephrologists are able to advise families on the possible outcome for their child on dialysis. Most children start dialysis with the expectation that successful renal transplantation is an achievable goal and will provide the best survival and quality of life. However, some will require long-term dialysis or may return intermittently to dialysis during the course of their chronic kidney disease (CKD). This article reviews the available outcome data for children on chronic dialysis as well as extrapolating data from the larger adult dialysis experience to inform our paediatric practice. The multiple factors that may influence outcome, and, particularly, those that can potentially be modified, are discussed

    The Acid Test of Fluoride: How pH Modulates Toxicity

    Get PDF
    Background: It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (FF^−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of FF^−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of FF^− into cells. Here, we asked if FF^− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings: Treatment of ameloblast-derived LS8 cells with FF^− at low pH reduced the threshold dose of FF^− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of FF^− dose and pH. Luciferase secretion significantly decreased within 2 hr of FF^− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm FF^− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, FF^−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions: The low pH environment of maturation stage ameloblasts facilitates the uptake of FF^−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis

    The Prehistory of Potyviruses: Their Initial Radiation Was during the Dawn of Agriculture

    Get PDF
    Background: Potyviruses are found world wide, are spread by probing aphids and cause considerable crop damage. Potyvirus is one of the two largest plant virus genera and contains about 15% of all named plant virus species. When and why did the potyviruses become so numerous? Here we answer the first question and discuss the other. Methods and Findings: We have inferred the phylogenies of the partial coat protein gene sequences of about 50 potyviruses, and studied in detail the phylogenies of some using various methods and evolutionary models. Their phylogenies have been calibrated using historical isolation and outbreak events: the plum pox virus epidemic which swept through Europe in the 20th century, incursions of potyviruses into Australia after agriculture was established by European colonists, the likely transport of cowpea aphid-borne mosaic virus in cowpea seed from Africa to the Americas with the 16th century slave trade and the similar transport of papaya ringspot virus from India to the Americas. Conclusions/Significance: Our studies indicate that the partial coat protein genes of potyviruses have an evolutionary rate of about 1.1561024 nucleotide substitutions/site/year, and the initial radiation of the potyviruses occurred only about 6,600 years ago, and hence coincided with the dawn of agriculture. We discuss the ways in which agriculture may have triggered the prehistoric emergence of potyviruses and fostered their speciation

    Regulation of pH During Amelogenesis

    Get PDF
    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation
    corecore